Chemical and Biomolecular Engineering

Top 20 Doctoral Program — National Research Council

Faculty

Dr. Lars C. Grabow
Dr. Lars C. Grabow

Associate Professor of Chemical and Biomolecular Engineering
Associate Professor of Chemistry

Office Location: S339, Engineering Bldg 1
Phone: 713-743-4326   |   Fax: 713-743-4323
Email: grabow [at] uh [dot] edu
Simulated STM images of FeO/Pt(111)

Education: 

Dipl.-Ing. Chemical Engineering, University of Stuttgart, Germany (2003)
Ph.D. Chemical and Biological Engineering, Ph.D. Minor in Computer Science, University of Wisconsin (2008)
Postdoctoral Fellow, Technical University of Denmark (DTU), Denmark (2010)

Professional Experience: 

Physical Science Research Associate, Stanford University (2011)

Courses: 

CHEE 3321 Analytical Methods for Chemical Engineers, Spring 2013

CHEE 3321 Analytical Methods for Chemical Engineers, Spring 2014

CHEE 3321 Analytical Methods for Chemical Engineers, Spring 2015

CHEE 3321 Analytical Methods for Chemical Engineers, Spring 2016

CHEE 3333 Chemical Engineering Thermodynamics II, Fall 2012

CHEE 3333 Chemical Engineering Thermodynamics II, Fall 2014

CHEE 3333 Chemical Engineering Thermodynamics II, Fall 2016

CHEE 6365 Fundamentals of Catalysis, Fall 2011

CHEE 6365 Fundamentals of Catalysis, Fall 2013

CHEE 6365 Fundamentals of Catalysis, Fall 2015

Research Interests: 

Rubiks_Cube_CH3O2_frontIn our group we use computational methods to understand and predict chemical processes that occur on solid-gas and solid-liquid interfaces. In particular, our work focuses on heterogeneously catalyzed reactions relevant for energy production, energy storage, photocatalysis, pollution mitigation and the production of useful chemicals. Density Functional Theory (DFT) and kinetic modeling form the basic tool set in our group. Computational power is provided by a 60 node/720-core computing cluster and supplemented with generous allocations at the Research Computing Center (RCC) and the Center for Advanced Computing & Data Systems.

Hydrodeoxygenation (HDO) catalysis

Flash pyrolysis of biomass produces a bio-oil that contains up to 300 different oxygenated compounds and leads to an oxygen content of 35 – 40 wt % oxygen. This high oxygen content leads to a low heating value (about 50 % of conventional oil) and makes bio-oil unstable and immiscible with conventional oil. Hydrodeoxygenation (HDO) uses high pressure hydrogen in a heterogeneously catalyzed process to remove residual oxygen compounds and increase the quality of bio-oil.

We use DFT to gain a fundamental understanding of the complicated processes during HDO by investigating the reactions of model oxygenate compounds with hydrogen on several catalyst systems. Besides the typical industrial hydrotreating catalysts (MoS2, CoMoS, NiMoS) we are also interested in transition metals, oxides and zeolites  for this reaction.

Zeolites for Selective catalytic reduction (SCR) of NOx

:::::Simulations:Zeolites:ZSM5:ZSM5.jpgZeolites are versatile, microporous materials that can be tailored for many different applications. They exhibit a large number of different crystal orientations, shapes and sizes and can be further modified with a variety of promoters. In our research we aim to explore design strategies, develop structure-reactivity relations and propose design principles to achieve desired catalytic properties. In close collaboration with Dr. Rimer and Dr. Harold, zeolite materials are synthesized, characterized and tested under realistic conditions for their activity as NOx reduction catalysts.

Image(left): Perspective view of ZSM-5

Catalyst and reactor design

HCN_TOC_graphic.pngEasily accessible catalytic descriptors, such as the binding energies of key intermediates or the d-band center, have been shown to be sufficient for the prediction of activity and selectivity trends for many catalytic reactions (e.g. Grabow et al., Angew. Chem. Int. Ed. 50, 4601-4605 (2011). Angew. Chem. 123, 4697-4701 (2011)). These descriptors allow for a fast screening and identification of good catalytic materials for a given reaction under specified conditions. The natural extension of this powerful approach is the direct coupling to reactor and process design. Using this integrated design we can optimize the catalyst and process parameters simultaneously, allowing for more than just incremental improvements to existing technology.

Image: Activity volcano for HCN synthesis from NH3 and CH4. 
Grabow et al., Angew. Chem. Int. Ed. 50, 4601-4605 (2011). 
Angew. Chem. 123, 4697-4701 (2011).

Research Group: 

Postdoctoral Researchers

  • Shengguang Wang
  • Juan Manuel Arce Ramos
  • Hieu Doan
  • Hung Vu Tran

Graduate Students

  • Sashank Kasiraju (2012 - present)
  • Yuying Song (2013 - present)
  • Quan Do (2014 – present)
  • Hari Thirumalai (2015 - present)
  • Sravan Kumar (2015 - present)
  • Xiao Li (2015 - present)

Visiting Students

  • Quan Vo (Chemistry Department, University of Houston)

Awards & Honors: 

NSF CAREER Award, 2014/2015
U.S. Department of Energy Early Career Award, 2014
Teaching Excellence Award, Cullen College of Engineering, University of Houston, 2014
Finalist in the Gerhard Ertl Young Investigator Award Competition, 2013
ICC Young Scientist Award, 2012
NACS Travel Award for the 15th ICC in Munich, 2012
AIChE CRE Division Travel Award, 2006
Kokes Travel Award, North American Catalyst Society, 2005
Graduation with Distinction Award from the University of Stuttgart, 2003
DAAD Scholarship (German Academic Exchange Service), 2001

Professional Activities: 

Director of the Southwest Catalysis Society (SWCS), Fall 2014 to present

Programming Chair of the Catalysis subdivision of the AIChE Chemical Reaction Engineering Division, 2012 to present.

Member of AIChE, ACS, NACS, SWCS, AAAS.

Journal Papers / Refereed Journal Publications

  1. A. Ghorbanpour, J. D. Rimer, & L. C. Grabow,

    "Computational Assessment of the Dominant Factors Governing the Mechanism of Methanol Dehydration over H-ZSM-5 with Heterogeneous Aluminum Distribution", ACS Catalysis, 6(4), 2287-2298 [DOI

    , 2016
  2. B. Baek, A. Aboiralor, J.D. Massa, S. Wang, P. Kharidehal, L.C. Grabow,

    "Strategy to Improve Catalytic Trend Predictions for Methane Oxidation and Reforming", AIChE Journal [DOI]

    , 2016
  3. H. V. Tran, H. A. Doan, B. D. Chandler & L. C. Grabow,

    "Water-assisted oxygen activation during selective oxidation reactions", Current Opinion in Chemical Engineering, 13, 100-108. [DOI]

    , 2016
  4. J. Shuai, H. D. Yoo, Y. L. Liang, Y. F. Li, Y. Yao & L. C. Grabow,

    "Density functional theory study of Li, Na, and Mg intercalation and diffusion in MoS2 with controlled interlayer spacing", Materials Research Express, 3(6) [DOI

    , 2016
  5. K. A. Goulas, S. Sreekumar, Y. Song, P. Kharidehal, G. Gunbas, P. J. Dietrich, F. D. Toste,

    "Synergistic Effects in Bimetallic Palladium-Copper Catalysts Improve Selectivity in Oxygenate Coupling Reactions", Journal of the American Chemical Society, 138(21), 6805-6812 [DOI]

    , 2016
  6. M. D. Oleksiak, A. Ghorbanpour, M. T. Conato, B. P. McGrail, L. C. Grabow, R. K. Motkuri & J. D. Rimer,

    "Synthesis Strategies for Ultrastable Zeolite GIS Polymorphs as Sorbents for Selective Separations", Chemistry-a European Journal, 22(45), 16078-16088 [DOI

    , 2016
  7. A. Ghorbanpour, J. D. Rimer, L. C. Grabow*,

    “Periodic, vdW-corrected density functional theory investigation of the effect of Al siting in H-ZSM-5 on chemisorption properties and site-specific acidity”, Catal. Comm. 52, 98-102 [DOI]

    , 2014
  8. J. Saavedra, H. A. Doan, C. J. Pursell, L. C. Grabow*, B. D. Chandler*,

    "The critical role of water at the gold-titania interface in catalytic CO oxidation", Science [DOI]

    , 2014
  9. P. G. Moses, L. C. Grabow, E. M. Fernandez, B. Hinnemann, H. Topsøe, K. G. Knudsen, J. K. Nørskov*,

    "Trends in hydrodesulfurization catalysis based on realistic surface models”,Catal. Lett. [DOI

    , 2014
  10. H. Zeuthen, W. Kudernatsch, G. Peng, L. R. Merte, L. K. Ono, L. Lammich, Y. Bai, L. C. Grabow, M. Mavrikakis, S. Wendt, F. Besenbacher,

    “Structure of Stoichiometric and Oxygen-Rich Ultrathin FeO(111) Films Grown on Pd(111)” , J. Phys. Chem. C 117, 15155-15163 [DOI]

    , 2013
  11. J. Varley, H. A. Hansen, N. Ammitzbøll, L. C. Grabow, A. A. Peterson, J. Rossmeisl, J. K. Nørskov,

    “Ni-Fe-S cubanes in CO2 reduction electrocatalysis: A DFT study”, ACS Catal. 3, 2640-2643 [DOI]

    , 2013
  12. P. Rubert-Nason, M. Mavrikakis, C. T. Maravelias, L. C. Grabow, L. T. Biegler,

    “Advanced solution methods for microkinetic models of catalytic reactions: A methanol synthesis case study”, AIChE J. 60, 1336-1346 [DOI]

    , 2013
  13. A. A. Peterson, L. C. Grabow, T. P. Brennan, B. Shong, C. Ooi, D. M. Wu, C. W. Li, A. Kushwaha, A. J. Medford, F. Mbuga, L. Li, J. K. Nørskov*,

    “Finite-size effects in O and CO adsorption for the late transition metals”, Top. Catal. 55, 1276-1282 [DOI]

    , 2012
  14. B. D. Chandler*, S. Kendell, H. Doan, R. Korkosz, L. C. Grabow, C. J. Pursell,

    "NaBr Poisoning of Au/TiO2 Catalysts: Effects on Kinetics, Poisoning Mechanism, and Estimation of the Number of Catalytic Active Sites", ACS Catal. 2​, 684-694 [DOI]

    , 2012
  15. L. C. Grabow*,

    "When Outliers Make All The Difference", ChemCatChem 4, 1887-1888 [DOI]

    , 2012
  16. L. C. Grabow*, B. Hvolbæk, H. Falsig, J. K. Nørskov,

    "Search Directions for Direct H2O2 Synthesis Catalysts Starting from Au12 Nanoclusters", Top. Catal. 55, 336-344 [DOI]

    , 2012
  17. L. R. Merte, G. Peng, R. Bechstein, F. Rieboldt, C. A. Farberow, L. C. Grabow, W. Kudernatsch, S. Wendt, E. Laegsgaard, M. Mavrikakis, F. Besenbacher,

    "Water-Mediated Proton Hopping on an Iron Oxide Surface", Science 336​, 889-893 [DOI]

    , 2012
  18. L. C. Grabow, F. Studt, F. Abild-Pedersen, V. Petzold, J. Kleis, T. Bligaard, J. K. Nørskov,

    “Descriptor-based Analysis applied to HCN synthesis from NH3 and CH4”, Angew. Chem. Int. Ed. 50, 4601-4605 [DOI], Angew. Chem. 123, 4697-4701 [DOI]

    , 2011
  19. L. C. Grabow, M. Mavrikakis,

    “On the mechanism of methanol synthesis on Cu through CO and CO2 hydrogenation”, ACS Catal1, 365-384 [DOI]

    , 2011
  20. L. R. Merte, J. Knudsen, F. M. Eichhorn, S. Porsgaard, H. Zeuthen, L. C. Grabow, E. Lægsgaard, H. Bluhm, M. Salmeron, M. Mavrikakis, F. Besenbacher,

    “CO-induced embedding of Pt adatoms in a partially-reduced FeOx film on Pt(111)”, J. Am. Chem. Soc. 133, 10692-10695 [DOI]

    , 2011
  21. L. R. Merte, L. C. Grabow, G. Peng, J. Knudsen, H. Zeuthen, W. Kudernatsch, S. Porsgaard, E. Lægsgaard, M. Mavrikakis, F. Besenbacher,

    “Tip-Dependent Scanning Tunneling Microscopy Imaging of Ultrathin FeO Films on Pt(111)”, J. Phys. Chem. C 115, 2089-2099 [DOI]

    , 2011
  22. J. Knudsen, L. R. Merte, L. C. Grabow, F. M. Eichhorn, S. Porsgaard, H. Zeuthen, R. T. Vang, E. Lægsgaard, M. Mavrikakis, F. Besenbacher,

    “Reduction of FeO/Pt(111) thin films by exposure to atomic hydrogen”, Surf. Sci604, 11-20 [DOI]

    , 2010
  23. L. C. Grabow, B. Hvolbæk, J. K. Nørskov,

    “Understanding trends in catalytic activity: The effect of adsorbate-adsorbate interactions for CO oxidation over transition metals”, Top. Catal53, 298-310 [DOI]

    , 2010
  24. S. Wang, B. Temel, G. Jones, L. C. Grabow, F. Studt, T. Bligaard, F. Abild-Pedersen, C. Christensen, J. K. Nørskov,

    “Universal Brønsted-Evans-Polanyi Relations for C-C, C-O, CN, N-O, N-N, and O-O Dissociation Reactions”, Catal. Lett141, 370-373 [DOI]

    , 2010
  25. L. C. Grabow, J. J. Uhlrich, T. F. Kuech, M. Mavrikakis,

    “Effectiveness of in-situ NH3 annealing treatments for the removal of oxygen from GaN(0001) surfaces” Surf. Sci603, 387-399 [DOI]

    , 2009
  26. L. R. Merte, J. Knudsen, L. C. Grabow, R. T. Vang, E. Lægsgaard, M. Mavrikakis, F. Besenbacher,

    “Correlating STM contrast and atomic-scale structure by chemical modification: Vacancy dislocation loops on FeO/Pt(111)”, Surf. Sci603, L15-L18 [DOI]

    , 2009
  27. J.J. Uhlrich, L. C. Grabow, M. Mavrikakis, T. F. Kuech,

    “Practical Surface Treatments and Surface Chemistry of n-Type and p-Type GaN”, J. Elec. Mat37, 439 [DOI]

    , 2008
  28. L. C. Grabow, A. A. Gokhale, S. Evans, J. A. Dumesic, M. Mavrikakis,

    “Mechanism of the water gas shift reaction on Pt: First principles, experiments, and microkinetic modeling”, J. Phys. Chem. C 112, 4608 [DOI]

    , 2008
  29. L. C. Grabow, M. Mavrikakis,

    “Nanocatalysis Beyond the Gold-Rush Era”, Angew. Chem. Int. Ed47, 7390-7392 [DOI], Angew. Chem120, 7500-7502 [DOI]

    , 2008
  30. N. Schumacher, K. Andersson, L. C. Grabow, M. Mavrikakis, J. Nerlov, I. Chorkendorff,

    “Interaction of carbon dioxide with Cu overlayers on Pt(111)”, Surf. Sci602, 702 [DOI]

    , 2008
  31. S. Seo, L. C. Grabow, M. Mavrikakis, R. J. Hamers, N. J. Thompson, P. Evans,

    “Molecular-scale structural distortions near vacancies in pentacene”, Appl. Phys. Lett92, 153313 [DOI]

    , 2008
  32. L. C. Grabow, Y. Xu, M. Mavrikakis,

    “Lattice strain effects on the CO oxidation on Pt(111)”,Phys. Chem. Chem. Phys8, 3369-3374 [DOI] (featured as cover page image)

    , 2006
  33. N. Schumacher, A. Boisen, S. Dahl, A. A. Gokhale, S. Kandoi, L. C. Grabow, J. A. Dumesic, M. Mavrikakis, I. Chorkendorff,

    “Trends in low temperature water-gas shift reactivity on transition metals”, J. Cat229, 265 [DOI]

    , 2005
  34. S. Kandoi, A. A. Gokhale, L. C. Grabow, J. A. Dumesic, M. Mavrikakis,

    “Why Au and Cu Are More Selective Than Pt for Preferential Oxidation of CO at Low Temperature”, Catal. Lett.93, 93 [DOI]

    , 2004

Books

  1. Lars C. Grabow,

    “Computational Catalyst Screening” in “Computational Catalysis” edited by A. Asthagiri and M. J. Janik. RSC Catalysis Series, Cambridge, UK [DOI]

    , 2014