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ABSTRACT

Although finite impulse response (FIR) models are nonparsimonious, they are frequently

used in model predictive control (MPC) systems because they can fit arbitrarily complex

stable linear dynamics.  However, identification of FIR models from experimental data

may result in data-overfitting and high modeling uncertainty.  To overcome this, FIR

models may be determined by (a) regularization-based least squares, and (b) indirectly

after prior identification of other parametric models such as ARX.  In both cases, some

prior knowledge about the model is essentially assumed to be known.  ARX models,

although parsimonious in terms of the number of identified parameters, perform poorly

for bad choices of model structure and order.  In this paper we propose a methodology for

the identification of parsimonious FIR models.  In this way, most advantages of the FIR

structure are retained, without its disadvantages.  The idea relies in the effective use of

some prior information about the model, through wavelet-based signal compression.  The

proposed methodology is compared with other FIR identification methodologies, on the

basis of the closeness of the identified FIR to the true FIR, steady state gain estimation,

and analysis of the prediction residuals on a cross validation set of fresh data.

Simulation studies on a single-input-single-output (SISO) process show that the proposed

methodology performs very well i n all tests considered.  Certain industrial practices are

shown to be special cases of the proposed formalism.
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INTRODUCTION

At the heart of any model predictive control (MPC) scheme lies a process model.  Popular

model structures used in applied MPC schemes are finite impulse response (FIR) models,

or step response (SR) models.  FIR and SR models can be estimated directly from process

input-output data.  The main reasons for the popularity of FIR models are:

•  They can fit any complex dynamic system; and

•  No model structure needs to be selected, provided a suff iciently long model kernel is

chosen.

However, FIR and SR models are nonparsimonious, requiring a large number of

parameters (typically 30 - 100) to be identified.  Therefore, large amounts of data are

needed for the identification of FIR or SR model parameters with small error margins and

without data overfitting problems.

The most straightforward method for the identification of FIR models is the

ordinary least-squares (OLS) method, relying on minimization of some sort of square

error between measurement and model prediction.  To avoid overfitting with OLS, one

can use the method of regularization (ridge regression (RR)), where a penalty on either

the size, or the change of the model parameters (FIR model kernel) is imposed (Wise and

Ricker, 1992, MacGregor et al. 1991).  Kozub (1994) proposed a refinement of the

regularization method, by suggesting weighting matrices in the Least-Squares objective

function that penalize changes in FIR coeff icients toward the tail end of the FIR

coeff icient sequence.  Ricker (1988) studied the use of partial least squares (PLS) and

singular value decomposition (SVD) for estimating FIR models.  Macgregor et al. (1991)

pointed out that the SVD method applied by Ricker (1988) was the same as principle

component regression (PCR).  MacGregor et al. (1991) and Dayal and Macgregor (1996).

provide extensive discussions of the above methods.

To overcome the problems associated with the nonparsimony of FIR models, one can use

parsimonious models of low order, such as transfer function models or ARX models (Box

and Jenkins, 1976; Ljung, 1987; Söderström and Stoica, 1989).  FIR models can then be
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obtained from the ARX models through mathematical manipulations.  Although,

parsimonious ARX models can be identified more accurately than mathematically

equivalent FIR models, the choice of appropriate model order and structure for ARX

models become crucial issues.  In essence, some prior knowledge about the model must

be used, for a reasonable model structure to be selected.  However, prior knowledge about

a model could also be used for the development of parsimonious FIR models.  The main

thesis of this paper is that parsimonious FIR model structures can indeed be constructed

and corresponding models can be identified from experimental data, provided certain

prior knowledge about the model is available.  For most chemical processes that

knowledge is often available and, thus, can be easily used.

The main idea of the paper can be explained through Figure 1:  While virtually all

coeff icients of the FIR model kernel { hj} j=1,2… need to be identified for small values of j,

only few coeff icients need to be identified for large j.  Values of hj not explicitl y

identified can be constructed through appropriate interpolation.  One question, then, is

how to select which terms of the sequence { hj} to identify explicitl y and how to construct

terms of { hj} not explicitl y identified.  In fact, as we show in the next section, the true

problem in FIR model identification is that of estimating the kernel { hj} j=1,2… through

reconstruction of a corresponding continuous function from sampled values of that

function.  Clearly, techniques more sophisticated than uniform sampling can be used for

the sampling of that continuous function.  We propose a solution based on the discrete

wavelet transform (DWT).  Using the compression capabiliti es of wavelets, we present a

methodology to identify parsimonious FIR models.  We show that certain simple

methodologies used in industrial practice generate wavelet-compressed FIR models using

specific wavelets (such as Haar's) and we propose nontrivial improvements on these

methodologies.

The main advantage of the discrete wavelet transform (DWT) of a sequence is that

it is localized in both frequency and time.  By truncating small  DWT coeff icients, the

original sequence may be sparsely represented, in terms of a smaller number of

coeff icients.  From prior partial knowledge of the model and the nature of the FIR

coeff icients, we can truncate a large number of wavelet coeff icients a priori, and thus
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require fewer coeff icients to be identified.  This is the basic idea upon which we base our

methodology of identifying FIR coeff icients parsimoniously.

Methodologies using wavelets for identification have been proposed in literature

in various contexts.  Tsatsanis and Giannakis (1992) propose an algorithm for the

identification of time varying auto-regressive (AR) and auto-regressive moving-average

(ARMA) models using wavelets.  Pati et al. (1993) examine their method for model-order

reductions of linear stable systems using wavelet approximations.  Sureshbabu and Farrell

(1995) study a wavelet based system identification method for non-linear systems.  A

method for the denoising of input-output identification data using wavelet based

prefiltering was presented by Palavajjhala et al. (1996).  Wavelets were applied in

detecting transient plant disturbances and jumps by Tsatsanis and Giannakis (1994).

The rest of the paper is organized as follows:  First, we discuss the FIR model

structure for discrete-time systems, and explain how a continuous-time function underlies

that structure.  Next, we briefly present some of the prevaili ng identification schemes for

the identification of FIR models, namely OLS, regularization, and ARX identification

(along the lines presented in Dayal and MacGregor, 1996).  Following this, we present

the DWT, explain how it can be used in the development of parsimonious FIR model

structures, and present a resulting identification methodology.  Next, we ill ustrate the

proposed method through an example, where we consider a SISO process with dead-time

and inverse response, and compare our methodology to other FIR identification

methodologies.  Finally, we summarize our results and present directions for future

research.

FIR MODEL IDENTIFICATION

Continuous- and discrete-time FIR models

Consider a stable, causal, continuous-time SISO process, modeled by the following

convolution model:
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where ∗  is the convolution operator;  y(t) is the output at time t;  u(t) is the input at time
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where hj, defined as
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are the coeff icients of the causal discrete-time convolution model corresponding to the

continuous-time model of equation (1).  At this point one might conclude that all
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coeff icients hj need to be identified, in order for the FIR model of eqn. (3) to be

identified.  This is not necessarily true.  Indeed, as equation (4) implies, the identification

problem consists of identifying the corresponding integrals of the continuous-time kernel

g(τ), which, in turn, can be approximated as

∑
=

=≈
m

i
iim tvctgtg

1
)()()( ( 5 )

where { , , }v vm1
�  is a set of basis functions for the subspace of functions containing

gm(t).  Substituting equation (5) into equation (4) yields
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Equation (6) makes it clear that identification of the FIR model of equation (3) can be

transformed into identification of the vector T
mcc ][ 1

� .  The advantage of this

transformation is that the basis functions },,{ 1 mvv �  can be virtually always chosen in a

way such that m<<n.  Indeed, while the value of n is determined by the continuous-time

system sampling period T (which, in turn, should be small enough to prevent aliasing),

the value of m is not.  In essence, equation (6) demonstrates that the vector

h = [ ]h hn
T

1
�  can be approximately parametrized (with good approximation) by a

vector in the subspace of mℜ  spanned by the set of vectors

},,1,][ˆ{ 1 miww T
niii

�� ==w .

The above discussion naturally leads to the problem of how to select the vectors

},,1,][ˆ{ 1 miww T
niii

�� ==w .  Certainly, there are several alternatives.  In the

sequel we propose an approach relying on the DWT and explain its advantages.
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FIR model identification

For notational simplicity, in the sequel we will assume that x kT x k( ) ( )≡  for any variable

x.  Assume the following FIR model structure for a stable system:

)()()(
1

kejkuhky
n

j
j +−= ∑

=
 = h uT k e k( ) ( )+ ( 7 )

where e(k) is output additive noise that is i.i.d. (identically, independently distributed)

with 0 mean and variance σ2;

[ ]Tnhhh �21=h ( 8 )

is the FIR model kernel;  and

 [ ]Tnkukukuk )()2()1()( −−−= �u  ( 9 )

is the vector of lagged inputs.

FIR Identifi cation using OLS

With N observations, input-output data can be written in matrix form as
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The OLS solution to the above problem is found by solving the standard least-squares

problem

( ) ( )hyhy
h

Φ−Φ− T  min ( 14 )

whose solution is the estimate of the FIR model kernel:
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where R �= Φ ΦT .  The bias of the OLS estimator �h is
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where h is the true FIR model coeff icient vector, and E is the expectation operator.

Similarly it can be easily shown that the variance of the OLS estimator �h  is

[ ] 12)ˆ)(ˆ( −=−− Rhhhh σTE ( 17 )

and the mean square error for the OLS estimator is
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[ ] ( )12trace)ˆ()ˆ( −=−− Rhhhh σTE ( 18 )

Regularization

In regularization, the objective function of the parameter estimation scheme imposes a

penalty on a function of the FIR coeff icients vector h.  For example, h can be estimated

from

( ) ( ) Qhhhyhy
h

TT α+Φ−Φ−  min ( 19 )

where α is a nonnegative scalar and Q is a positive definite matrix.  The solution for this

minimization is

[ ] yQRh TΦ+= −1ˆ α ( 20 )

Several options for Q are available (Dayal and MacGregor, 1996).  Kozub (1994)

suggested the choice

Q = A
T
LA ( 21 )

where A and L  are the following n n×  matrices
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This choice for Q places an increasing penalty on the FIR coeff icient differences (hi-hi-1)

as i increases from 2 to n.
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FIR models through ARX Model Identification

To determine the FIR coeff icients, one could first identify a structured model, li ke an

autoregressive with exogenous inputs (ARX) model, from which one could subsequently

determine the FIR coeff icients.  The ARX model structure is of the following form:

)()()()(
11

kejkubjkyaky
ba n

j
j

n

j
j +−+−−= ∑∑

==
( 24 )

ARX models can be identified using standard linear least-squares techniques.  If the noise

e is not white then a noise model can be added to the above model.

THE DISCRETE WAVELET T RANSFORM (DWT)

The DWT of a (finite or infinite dimensional) vector is the result of a linear

transformation that generates a new vector of dimension equal to that of the original

vector.  Figure 2 shows schematically an example of how Mallat’s multi resolution

analysis algorithm (Mallat, 1989) transforms a vector Tff ][ 81 �=f  in 8ℜ  to its

DWT Tff ]
~~

[
~

81 �=f  in 8ℜ .  At each step, the weighted averages and differences of

corresponding vector segments are computed.  The averaging and differencing operations

are essentially low- and high-pass filtering operations that reveal the frequency content of

segments of the original vector in various frequency bands.  Therefore, the DWT is a

time-frequency analysis of a signal.  The net effect of the calculations in Figure 2 is

multiplication of the original vector by an invertible matrix W.  However, as Figure 2

shows, Mallat’s algorithm carries out that matrix-vector multiplication in an extremely

eff icient manner (O(n) computations).

The decomposition of a signal shown in Figure 2 can also be seen as passing the

signal through a filter bank (Strang and Nguyen, 1996).  At each resolution level i

( 31 ≤≤ i ) the signal is passed through a low-pass filter C, and a high-pass filter D.  C and

D are digital filters constructed from chosen filter coeff icients ci, and di respectively,

according to the kind of wavelet chosen.  The DWT of a signal depends on the particular

kind of wavelet (filters C and D) chosen.  In this study, we use a quadratic spline (QS)
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wavelet basis, because it results in smooth approximations of the original function.  The

coeff icients for the filters C and D corresponding to the QS wavelet are (Strang and

Nguyen, 1996)

( ) ( )1331
4

1
3210 −−=cccc ( 25 )

( ) ( )1331
4

1
3210 −−=dddd ( 26 )

For example, to find the DWT of a vector in 12ℜ  using the idea in Figure 2, one has to

successively multiply the original vector by the following matrices, whose product is W.
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Remark:  The terms 10 cc + , 32 cc + , 10 dd + , 32 dd +  that appear in the above matrices

are due to the fact that the signal transformed has finite length.  To cope for that, constant

extrapolation is used (Strang and Nguyen, 1996).

For comparison purposes, we also use the Haar wavelet basis, the simplest

wavelet, with relatively poor filtering characteristics.  For the Haar wavelet basis, the

filters C and D, have the following weights:
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1
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( ) ( )11
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For example, to find the DWT of a vector in 8ℜ  using the idea in Figure 2, one has to

successively multiply the original vector by the following matrices
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In general, the DWT of a vector f is determined as
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where the matrices W i (i=1,...,nr) are defined as follows:
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1≥rn  is the highest resolution level (original signal level) with the lowest resolution

level being 0.  From a practical viewpoint, we will use the QS wavelet transform to

resolve signals of length

623 ≥×= rnn ( 38 )

and the Haar wavelet for signals of length

22 ≥= rnn ( 39 )

At each resolution level i ( rni ≤≤1 ), we use the matrices H0,i and H1,i to derive ni/2

DWT detail coeff icients, and ni/2 coeff icients at the immediately lower resolution level,

where

i
in 23×= ,  rni ≤≤1 ( 40 )

for the QS basis, and
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i
in 2= ,  rni ≤≤1 ( 41 )

for the Haar basis.

Finally, the inverse DWT (IDWT) can be easily found.  Given the DWT 
~
f , the

IDWT can be found as

fWf
~1−= ( 42 )

Mallat’s algorithm can be used to perform the above matrix/vector multiplication in O(n)

multiplications, because, for several classes of wavelets, the matrix 1−W  has the same

sparse structure as W.  For orthonormal wavelets, W is also orthonormal, with

TWW =−1 .

FIR MODEL COMPRESSION USING THE DWT

We will first explain how wavelets can be used to compress a given FIR model.  The

discussion will t hen lead to a methodology for the identification of an initially partially

known FIR model in compressed form.

Compression of FIR models

FIR model compression (approximation) using wavelets first involves determining the

DWT coeff icients of the FIR model { hi} using equation (34) for a certain wavelet.  Of the

obtained DWT coeff icients, only coeff icients with magnitude above a certain threshold

value are significant and, thus, retained, with the rest being neglected (set to zero).  Good

compression can be attained if a large number of the DWT coeff icients are neglected.

The characteristics of the particular wavelet used (e.g., smoothness) are also important.

The features of the finite-impulse response of typical stable process dynamics are

dead-times, inverse responses, a rise in the process output and finally a decay.  This can

be observed in Figure 1, which shows all of these features in an FIR process model.  The

discrete-time FIR model coeff icients are equidistantly sampled points of the continuous-

time impulse response of the process.  The sampling interval T is chosen according to
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Shannon's sampling theorem (Benedetto, 1992), to prevent aliasing effects.  This choice

of T would be capable of capturing virtually all fast or abrupt changes (high frequency) in

the impulse response.  From Figure 1 it can be observed that for typical impulse

responses, all the fast and abrupt changes occur during the early part of the impulse

response.  However, the tail of the impulse response changes (decays) much more slowly,

which suggests that we could sample at a slower rate there.  Therefore, a methodology is

desired which samples the impulse response at different rates, during different regimes of

the response.  By doing so, one would need to know fewer parameters by which to

characterize the impulse response.  This could be achieved in many ways, including

wavelet compression techniques.  The idea is as follows.

Consider the DWT

Whh =~
( 43 )

of the FIR kernel vector h.  The DWT coeff icients are contained in the vector 
~
h  shown in

Figure 3.  As can be seen in Figure 3, at the different resolution levels there are only few

significant coeff icients, with the rest being negligible.  The percentage of insignificant

coeff icients increases at higher resolution levels.  Thus, by retaining only the significant

DWT coeff icients, and neglecting all the others (setting them to zero) we can achieve

compression of the FIR kernels.  To explain this procedure of compression, consider a

vector of the retained coeff icients, denoted by ch
~

, as follows

hPh
~~ T

c = ( 44 )

where ch
~

 is a vector of length nc;  nc is the number of retained coeff icients after

compression;  and P is a projection matrix of dimensions cnn× .  The projection matrix P

is constructed with its columns consisting of unit vectors n
i ℜ∈v , whose i th  entry is 1

and all others 0.  The indices i are chosen so that i Ic∈ , where Ic denotes the set of

indices of the retained DWT coeff icients.  The compressed FIR model is then

reconstructed using the IDWT as follows
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ccc hXhPWhh
~~1 ==≈ − ( 45 )

where PWX 1ˆ −= is a matrix of dimensions cnn× .

FIR Model Identification using Wavelet Compression

In identifying FIR models using wavelet compression, we use the standard OLS approach.

Consider the linear FIR model in equation (7).  This equation can be written as

)()(
~

)())(()()()()( kekkekkekky TTTTT +=+=+= −− uWhuWWhuh ( 46 )

By compressing the DWT coeff icients as described earlier, we can approximate y(k) as

)()(
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TT
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where )(ˆ)( kk T uXu =� .

Remark:  If the wavelet matrix W is orthonormal, then W
-T

=W, and

)(~)(~)( kkk c
T uuPu ==� , where )()(~ kk Wuu =  is the DWT of u(k).  •

We then identify the retained coeff icients 
~
hc using OLS to get the estimate of the

compressed DWT coeff icients as
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and the vector y is defined as in equation (11).  The FIR model is then estimated by

reconstruction using the IDWT as follows
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( ) ccc hXhPWh
~̂~ˆ 1 == − ( 50 )

Bias and Var iance of FIR �hc

Theorem 1.  The bias [ ] [ ]ccc EE hhhhb ˆˆˆ −=−=  in the estimate of the FIR model

kernel �hc  using wavelet compression is equal to

cc hhb −= ( 51 )

where h is the true kernel, and hc is the true DWT-compressed approximation of h.

Proof.  See Appendix.

Theorem 2.  The variance of the estimator �hc  is

[ ] ( ) TTT
cc

T
ccE XRXXXbbhhhh

12)ˆ)(ˆ(
−

+=−− σ ( 52 )

Proof.  See Appendix.

Corollary 1.  The mean square error of the estimate �hc  is given by

[ ] ( ) 








+=−−
− TT

c
T
c

T

n
E XRXXXtracebbhhhh

121
)ˆ()ˆ( σ ( 53 )

Choice of Retained DWT Coeff icients for Compression

The bias term c
T
c bb  in equations (52) and (53) can be made small by retaining

appropriate DWT coeff icients, which, however, we seek to determine in the first place.

The choice of retained DWT coeff icients is made using a number of factors discussed

below.

The first step involves a choice of retaining DWT coeff icients based on prior

knowledge of the process.  Let the prior knowledge available to us about the process be a

very crude FIR model kernel denoted by 0h , with DWT denoted by 
~
h0 .  The initial set of
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retained coeff icients is obtained by discarding DWT coeff icients in 
~
h0  that are small .  A

DWT coeff icient is retained on the following basis:

}
~

 :{ˆ ,0,0 δ≥= ic hiI ( 54 )

where δ is some small (possibly resolution-level-dependent) positive threshold value (not

to be confused with thresholding used in denoising of signals by Donoho and co-

workers), and I0,c refers to the initial set of indices of the retained DWT coeff icients.  This

compression introduces a small error, as the following theorem shows.

Theorem 3.  Consider an FIR model h, which is compressed using the DWT, with a

threshold of δ.  Then the operator induced norm error is bounded as

δc
ic ≤−
2

hh ( 55 )

where c is some constant, and 
2i

•  denotes the induced 2-norm of an operator.

Proof.  See Appendix.

Once we have a set of retained DWT coeff icients, we identify these coeff icients

from process input-output data.  The FIR coeff icients are then reconstructed from these

identified DWT coeff icients using the IDWT.  Using the identified model, we obtain the

prediction residuals

)(ˆ)()(ˆ kkyke T
c uh−= ( 56 )

The residuals are computed for a cross-validation data set (not used in the identification),

and are tested for the following:

1. Independence of residuals:  The autocorrelations of the residuals are tested for

independence (whiteness) by using the method outlined in Ljung (1987).  The

autocorrelation estimate at delay τ of the residuals � ( )e k , for k=1,..., Nx, (where Nx is

the length of the cross-validation set) is given by
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∑
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N

k
e keke

N
r ( 57 )

where �σ 2  is the variance estimate of the residuals.  The residuals can then be checked

for independence by checking whether

ατ K
N

P
r

x
e ≤)(ˆ ( 58 )

where Kα is the α-level of the normal distribution N(0,1).

∑
−

+−=
=

1

1

2 )(ˆ
x

x

N

N
erP

τ
τ ( 59 )

2. Residual sum of squares(Rss):  We seek to retain DWT coeff icients that would make

Rss as small as possible.  Rss is defined as

∑
=

=
xN

k
ss keR

1

2 )( ( 60 )

After identifying an FIR model, with the initial set of retained DWT coeff icients,

we check the residuals using the above tests.  We then add/drop coeff icients and repeat

the identification, and residual testing.  This procedure is repeated until the residuals are

independent (with some confidence), and Rss is small enough.

Remarks:

•  Our computational experience has shown that all DWT coeff icients corresponding to

the lowest resolution level should be retained.  This helps proper identification of the

steady state characteristics of the impulse response.

•  The indices of the retained DWT detail coeff icients corresponding to lower resolution

levels (0-2 typically) of the prior crude model h0, end up being good choices for the

model being identified as well .  The reason for this is that the lower resolution details
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capture the lower frequency content of the FIR models.  It is the indices of the higher

resolution details that are usually different for different models.

•  The outlined procedure to select the coeff icients suggests that we may have to try a

large number of combinations of DWT coeff icients to arrive at the best set.  This is

however not the case because of the following reasons:

− The lower resolution level indices of retained components usually remain the

same for typical processes modeled by FIR models.

− Only very few of the higher resolution level coeff icients need to be retained, and

they tend to be the early ones.  This is because, as discussed earlier, the impulse

response needs to be sampled more frequently during the earlier part of it.

− Choosing coeff icients at a lower level is independent of the retained coeff icients

at higher levels.  Therefore, a bottom-up procedure for selection of retained

coeff icients is suggested, i.e., we start choosing coeff icients from lower resolution

levels first, and then move on upward to higher levels.

Algor ithm

The following steps are suggested for choosing the retained DWT coeff icients:

Step 1. Obtain the DWT 
~
h0  of the prior FIR model h0.  Obtain a set of indices for detail

coeff icients to retain, according to a certain threshold (possibly resolution-level-

dependent).  Retain all i ndices corresponding to the lowest resolution signal.  Let

this set of retained coeff icient indices be denoted by Ic.  Set l=3.

Step 2. Identify the DWT coeff icients corresponding to indices in Ic using experimental

input-output data.  Construct FIR model.

Step 3. Perform tests on the prediction residuals on cross-validation experimental data.

Step 4. If the residuals test satisfactorily (i.e. independent and small Rss) then go to Step 6,

otherwise continue.
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Step 5. Add/Drop DWT details corresponding to level l, and update retained indices set

Ic, and repeat steps 2 - 4.

Step 6. If level l < nr, the highest resolution level, increase l and repeat steps 2 - 5.

Step 7.  Stop.

EXAMPLE

A subsystem of a steam gas reformer is considered (Meziou and Alatiqi, 1992).  The

reformer can operate at either 58% or 100% capacity.  When the reformer moves from

one capacity to the other, the transfer function between the steam-to-carbon ratio and

temperature changes from

)11144(

)15.2(841.0
)(

2

3

++
+−=

−

ss

es
sH

s

( 61 )

at 58% capacity to

)11144(

)15.2(118.1
)(

2

5.1

++
+−=

−

ss

es
sH

s

( 62 )

at 100% capacity.  Meziou and Alatiqi (1992) show that the process can be satisfactorily

controlled at 58% capacity by a controller designed on the basis of the 58% capacity

model.  However, if that controller is used to control the plant at 100% capacity, the

resulting closed-loop behavior is highly oscill atory, hence unsatisfactory.  Based on that,

the above authors establish the need for the development of an improved process model at

100% capacity. We will solve this problem using the approach proposed in this paper.

We will seek to identify a discrete-time FIR model for the steam reformer at 100%

capacity.  With sampling performed every 0.5 min, the process has a settling time of

around 90 sampling intervals.  The number of coeff icients we choose for the FIR model is

n=96.  3000 process input-output data points are generated by applying a PRBS input to

the process.  The output is corrupted by additive Gaussian noise with zero mean and a
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standard deviation of 0.05.  The first 2000 points are used for identification, and the next

1000 points for cross validation of the identified model.

Through this example we perform the following:

•  Demonstrate the proposed FIR identification methodology with wavelet compression.

•  Compare the proposed method to other existing FIR identification schemes.

•  Compare the proposed method using the QS wavelet compression to Haar wavelet

compression (corresponding to heuristic methods used in practice).

FIR Identification using wavelet compression

In this sub-section we identify the FIR model coeff icients (contained in h) using the

proposed wavelet compression scheme with the QS basis.  The selection of wavelet

coeff icients to be retained is demonstrated by first using some prior knowledge of the

process, and then by performing tests on a cross validation data set.

Prior knowledge of the process is available as an FIR model at a different

operating point (58% capacity).  The prior FIR model, and the FIR model to be identified

(unknown) are shown in Figure 4.  As an initial guess for the retained wavelet

coeff icients to be identified, we retain all the lowest resolution coeff icients, and the detail

at resolution levels 0, 1, and 2.  The retained coeff icients at the initial step (I0,c) are

������� �� ��� �� ��

2 level
 resolution

at  1,2 details

1 level
 resolution

at  1,2 details

0 level
 resolution

at  1,2 details

level resolution
lowest at 

1,2,3 tscoefficien all

1413 8 754321

The FIR model is determined by identifying these coeff icients using the first 2000

input-output data points.  This model is used to predict the output in the next 1000 points,

and the residuals are obtained using the 1000 points from the cross validation set.  The

autocorrelation of the residuals is analyzed to examine their whiteness using the method

described in the previous section.  The residuals are found to be autocorrelated up to a lag

of 8.  We then add coeff icients 25 and 26 (details 1, 2 at resolution level 3) to get the new

index set I1,c.  The residual analysis is repeated, and we find that the residuals appear
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white (95% confidence level), and also there is a reduction in Rss.  We then add

coeff icient 51 (detail 1 at resolution level 4) to get the index set I2,c.  Residual analysis

now reveals that the residuals are white and there is a further reduction in Rss.  The

autocorrelations of the residuals (up to a lag of 15) for the 3 set of retained indices  and

95% confidence bounds (for whiteness) are plotted in Figure 5.  These results are

summarized in Table 1.

Compar ison With Other Methods

Through this example we compare the identification of following schemes:

(A) Direct nonparsimonious FIR identification.

(B) FIR identification using regularization.

(C) FIR model determination from ARX identification with exact model order selection.

(D) FIR model determination from ARX identification with inexact model order

selection.

(E) FIR model identification using wavelet compression with Haar basis.

(F) FIR model identification using wavelet compression with QS basis.

We compare these models based on the mean square errors of their FIR

coeff icients.  The errors are measured as deviations of the estimated FIR coeff icients from

the true (assumed known for the purpose of comparison) FIR coeff icients as follows:

( )∑
=

−=
n

j
jj hh

n 1

2
h

ˆ1
MSE ( 63 )

where hj s refer to the true FIR coeff icients, and 
�
hj s refer to the identified FIR

coeff icients using the different techniques.  The FIR models identified using methods A-F

are plotted along with the actual FIR in Figure 6.

Comparisons based on output prediction errors are also made on a cross-

validation data set consisting of 1000 input-output data points.  The residual squared

sums (Rss) for methods A - F are computed as in equation (60).
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Finally, we compare the steady-state gains obtained using the different FIR

models as

∑
=

=
n

j
jss hG

1

ˆˆ ( 64 )

where jĥ  are the identified FIR coeff icients using methods A-F.  The true gain of the

process is 1.118.  All the results of these comparisons are give in Table 2.

Comparison of the wavelet compression method to identify FIR models reveals a

number of important characteristics of the proposed scheme.

•  As can be seen from the comparison of MSEh, method F (using wavelet compression

with QS basis) is lowest second to method C, which is the ARX model identification

with exact choice of model order and with the appropriate noise model being fitted.

However the ARX scheme does very poorly when an incorrect model order is

selected.

•  Comparison of steady state gains reveals the wavelet method (F) is slightly better than

methods (A), (B), and (E), and considerably better than the ARX schemes.

•  The tests based on MSEh and Gss cannot be performed in real situations, as the true

model and model gain would not be available.

•  The more realistic test is cross-validation on a fresh set of testing data.  The wavelet

method (F) shows the lowest Rss, on this cross-validation test.  Again, method (D)

performs almost as well as the wavelet method, but method (C) performs poorly,

again because of incorrect model selection.

We also make comparisons of the wavelet compression method using the QS

wavelet basis, with method (E) which uses the Haar wavelet basis.  Again, method (F)

performs better than this method in all the tests.  Also, the QS basis provides better

compression, than compression with the Haar wavelet basis.  Compression is determined

as
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tscoefficien  DWTidentified ofNumber 

kernels  FIRofNumber  Total
nCompressio=

With the QS wavelet basis we get a compression  of 7.4, while with the Haar wavelet

basis we get a compression of 5.1.

CONCLUSIONS

In this paper we have proposed a new methodology for the identification of process FIR

models using wavelet compression techniques.  Comparisons are made with other

existing schemes, on the basis of closeness of f it with true process models, steady state

gains, and tests on prediction residuals.  We have shown that this method (with the QS

basis) performs comparably or better than the existing schemes for FIR identification.  It

is to be noted here that proper selection of the wavelet coeff icients to be retained is an

important issue in the proposed methodology.  A methodology for retaining the best

wavelet coeff icients for compression of the FIR model was given.

Comparisons of the proposed methodology are also made for different choices of

the wavelet basis.  We show that the QS basis gives better approximation, prediction, and

compression than the Haar wavelet basis.  The Haar wavelet basis idea is used in the

industry for identifying FIR models, where FIR coeff icients during the decay regimes of

the impulse response are considered constant over windows of time.  The idea here is to

sample the impulse response of the system at different rates during different regimes. The

QS wavelet basis for compression provides a good way to construct FIR coeff icients not

identified directly through appropriate interpolation.
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APPENDIX A

Proof of Theorem 1.

Consider the estimate, �h c  of  the FIR h, obtained using the wavelet compression

technique

( )�h X X RX X yc
T T T=

−1
Φ (A - 1)

The expected value of �h c is

[ ] ( ) [ ]
( )

E Ec
T T T

T T

�h X X RX X y

= X X RX X Rh

Qh

=

=

−

−

1

1

Φ

(A - 2)

where ( )Q X X RX X R�=
−T T1

.  Post-multiplying Q by X results in

QX X= (A - 3)

X is a n x nc matrix with rank nc.  If R is of full rank (input must be persistently exciting

of order n), then Q has rank nc.  This is because XTRX would be of rank nc, consequently

( )X X RX XT T T−1
would be of rank nc, and then so would ( )X X RX X RT T T−1

.  Since Q

is of rank nc,  it would have nc eigen vectors corresponding to its nc nonzero eigen values.

Consider E[ �h c ], which can be written as:

[ ]E c� ~
h Qh QW h= = −1 (A - 4)

where 
~
h  is the DWT of h.  

~
h  may be permuted as follows with a permutation matrix I p

such that its first nc entries are retained DWT coeff icients 
~
hc  after compression

~
~

~

'

h
h

I hc

c
p









 = (A - 5)
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where 
~

'hc  are the coeff icients discarded after compression.  The matrix I p may be

partitioned as

[ ]I P Pp c= ' (A - 6)

where P is the projection matrix, and Pc' consists of the unit vectors in I , not contained in

P.  The matrix I p is a unitary matrix, i.e.

I I I I Ip
T

p p p
T= = (A - 7)

Next, consider h which may be written as

h W h W I I h W I I h W I
h
h

= = = =










− − − −1 1 1 1~ ~ ~
~
~

'
p
T

p p p
T

p
c

c
(A - 8)

and W
-1

I p may be written as

[ ] [ ]W I W P W P X X− − −= =1 1 1
p c c ' ' (A - 9)

where X W Pc c' '
�
= −1 .  Since W

-1
 is non-singular and all the vectors of Pc' are linearly

independent orthonormal to the vectors in P, Xc' is linearly independent from X.

Therefore, Since the columns of  X are eigen vectors of Q (rank nc) the columns of Xc'

form the null space of Q, i.e.

QX 0c' = (A - 10)

Therefore we have

[ ] [ ]QW I QX 0 X 0− = =1
p (A - 11)

We can therefore express E[hc] as follows

[ ] [ ]E c p
c

c

c

c
c c

� ~
~

~
~

~

' '
h Qh QW I

h
h

X 0
h
h

Xh h= =








 =









 = =−1 (A - 12)

The bias bc can therefore be written as
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[ ]b h h h hc c cE= − = −
�

(A - 13)

ΟΕ∆.

APPENDIX B

Proof of Theorem 2.

Consider the covariance of the estimator 
�
h c  of  the FIR h, which can be written as

follows:

[ ] [ ] [ ] [ ]T
cc

T
c

T
c

TT
cc EEEE hhhhhhhhhhhh ˆˆˆˆ)ˆ)(ˆ( +−−=−− (B - 1)

E[ cĥ ] is known from equation (A-12).  E[ T
cchh ˆˆ ]  can be written as

[ ] TT
cc

T
cc EE XhhXhh 



= ~̂~̂ˆˆ (B - 2)

and
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 Φ
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RXXXyyXRXX

yXRXXyXRXXhh

TTTTT

T
TTTTTTT

cc

E

EE
(B - 3)

where E[yyT] can be written as

[ ]E T Tyy hh I= +Φ Φ σ 2 (B - 4)

Substituting this in equation (B-3) we get

( ) ( ) ( ) 1211~̂~̂ −−−
σ+





=



 RXXRXRXXhhRXRXXhh T

T
TTTTTT

ccE (B - 5)

This results in
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This results in the covariance estimate of �h  in equation to be

[ ] ( )E c c
T T T T T T T T T( � )( � )h h h h hh hh Q Qhh Qhh Q X X RX X− − = − − + +

−
σ2 1

=
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−

I Q h I Q h X X RX X
T T Tσ2 1

(B - 7)

We can write equation (B-7) in terms of the bias bc as

[ ] ( )E c c
T T T T( � )( � )h h h h bb X X RX X− − = +

−
σ 2 1

(B - 8)

The mean squared error of the estimate �h  can be obtained from
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APPENDIX C

Proof of Theorem 3.

The induced 2-norm of an operator L y L:u u� = , defined as ( )y k L k kT( ) ( ) � ( )= =u h u ,

is given by:

L h
i k

k

k

n

2
0 2 1

=
≤ < =

∑sup
ω π

ωe-j (C - 1)

Let L y Lc c:u u� =  be defined as ( )y k L k kc c
T( ) ( ) � ( )= =u h u .  Then
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Therefore, if c n i= ⋅ ∞W , we have

h h− ≤ ⋅c i
c

2
ε  (C - 4)

ΟΕ∆.
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Table 1.  Selection of retained DWT coeff icients for Identification and Residual tests

Index set Whiteness Test Rss

I0,c Colored 2.5452

I1,c White 2.4135

I2,c White 2.4081

Table 2.  Comparison of FIR Identification methods A-F

Method MSEh (10-5) Rss Gss

A 15.98 3.312 1.1189

B 0.8226 3.165 1.1188

C 2.0778 4.389 1.1232

D 0.1436 2.470 1.1245

E 0.7982 3.059 1.1189

F 0.6393 2.408 1.1187
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Figure 1.  Typical impulse response with dead-time and inverse response, with equal

sampling intervals (××)  and varying sampling intervals (o)
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Figure 2.  Example of discrete wavelet transform
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Figure 3.  Lowest resolution and detail signals for FIR in Fig 1
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Figure 4.  FIR Coeff icients of Prior model and Actual model to be identified
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Figure 5.  Plot of residual autocorrelations with lag (horizontal bars indication 95%

confidence intervals)
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Figure 6.  FIR coeff icient plots: (a) actual, A, B; (b) actual, C, D; (c) actual, E, F.


