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Abstract

This work focuses on robustness of model predictive control (MPC)
with respect to satisfaction of process output constraints. A method of
improving such robustness is presented. The method relies on
formulating output constraints as chance congraints using the
uncertainty description of the process model. The resulting on-line
optimization problemis convex. The proposed approach is illustrated
through a smulation case study on a high-purity distillation column.
Suggestions for further improvements are made.

I ntroduction

Robustness is a highly desirable property for process control systems. Qualitatively speaking, a controller

isrobust if it results in actual closed-loop behavior that does not deviate unacceptably from the nomina
closed-loop behavior, which, in turn, corresponds to a nominal process behavior. For example, a model -

based controller results in robust closed-loop stability if the closed loop is stable even if there is a
discrepancy between the model used by the controller and the actual process behavior. The extent of such
discrepancy for which closed-loop stability is maintained corresponds to the degree of robustness of that

controller. Although necessary, robust stability is usually not sufficient for good controller performance.

Other closed-loop properties may have to be maintained in the presence of discrepancy between the

nominal behavior of a process and its actua one. For instance, the resulting regulation error magnitude

(e.g. its 2-norm or c-norm) in a feedback loop has to remain “small” in the presence of nominal/actual
process behavior discrepancy. Such a requirement is frequently referred to as robust performance. Along
with robust stability, robust performance, as defined in the previous sentence, has been studied extensively.
However, as explained above, there are many more properties that capture closed-loop performance. One
such property, particularly important for constrained model predictive control (MPC) systems, is the
satisfaction of various inequality constraints.

Inequality constrained MPC systems rely on the on-line optimization of an objective function over
a future moving horizon, subject to various constraints. At each time step, process measurements are used
to formulate the on-line optimization problem whose solution determines an optimal input, which is fed to
the process.

The robustness of unconstrained MPC has been studied extensively. Since an unconstrained MPC
system is equivalent to a linear time-invariant system, robust unconstrained MPC analysis and synthesis
methods relying on either time-domain or frequency-domain descriptions can be used. Discussions of
frequency-domain and time-domain methods can be found in Morari and Zafiriou (1989) and Mosca
(1995), respectively. For constrained MPC systems, the study of robustness has several facets, and is at a
less mature stage. Robust #igbresults for constrained MPC, within the framework set by Rawlings and
Muske (1993), have been presented by a number of investigators, including Genceli and Nikolaou (1993),
Michalska and Mayne (1993), Zheng and Morari (1993), Chen and Allgéwer (1996), Lee and Yu (1997),
Badgwell (1997), De Nicolao et al. (1998). The purpose of this work is to examine a different aspect of
constrained MPC robustness, namely robustness with respect to satisfaction by the actual system of
inequality constraints posed in the on-line optimization problem. While inequality constraints that place
bounds on process inputs can be easily satisfied by the actual system, constraints on process outputs are
more elusive. That is because future process outputs within an MPC moving horizon have to be predicted
on the basis of a process model (involving the effects of manipulated inputs and disturbances on process
outputs). Because the model involves uncertainty, process output predictions are also uncertain. This
uncertainty in process output predictions may result in adverse violation of output constraints by the actual
closed-loop system, even though predicted outputs over the moving horizon might have been properly
constrained. Consequently, a method of incorporating model uncertainty into the output constraints of the
on-line optimization is needed. This would improve the robustness of constrained MPC. In this paper, we
introduce an approach towards achieving that goal.

The proposed approach relies on formulating output constraints of theytype& y < V. as

chance constraints of the type



(1) I:)r{ymin Sysymax}za

where Pr{A} is the probability of event A occurring, y is the process output bounded by Yin and Yimax, and
a isthe specified probability, or confidence level, that the output constraint would be satisfied. Under the
assumption that the process output y is predicted by a linear model with normally distributed coefficients,
the above chance constraint can be reformulated as a convex, deterministic constraint on process inputs.
Thisnew constraint can then be readily incorporated into the sandard MPC formulation. The resulting on-
line optimization problem can be solved using reliable convex optimization algorithms.

The rest of the paper is structured as follows: We first provide a brief overview of stochastic
programming and chance-constraint optimization. Next, we show how the MPC on-line optimization
problem can be cast as a chance constraint problem. Subsequently, we present an example of using chance-
constrained MPC on a high-purity distillation column, an ill-conditioned system. Finaly, we draw
conclusions and make suggestions for further research.

Stochastic Programming and Chance-Constraint Optimization

Stochastic programming is an optimization technique in which the constraints or objective function of an
optimization problem contain stochastic parameters. Chance-constrained optimization is one method of
stochastic programming that attempts to reconcile optimization over uncertain constraints. The constraints,
which contain stochagtic parameters, are guaranteed to be satisfied with a certain probability at the
optimum found. A typical chance constrained stochastic programming problem has the following form
(Birge and Louveaux, 1997):

min f (x)
X
(2) st. g1(x)<0

Pr{gz(p,x) < 0}2 a

where x 00" is the decision variable vector, f(x)00, g,(x)00™, and g,(p,x) 00™ contains the

stochastic parameter vector pOOP. If the probability density function of p is known, then the
probabilistic constraint Pr{g,(p,x) < 0}=a can, in principle, be substituted by a deterministic constraint of
the form g5(x) <0, so that the entire optimization problem can be handled as an ordinary nonlinear
programming problem.

Depending on the form of g, the explicit form of g; may be difficult to obtain. The task of
developing an explicit closed form for g; is greatly smplified if g, is affine in the parameter vector p, i.e.
92(p,x) = A(X)p +b(x) , where A(x) DO ™*P.

For situations in which the stochastic parameters p can be separated from the decision variable x
in a constraint such as

(3) Pr{g,(x)<p}2a

the deterministic equivalent can be found fairly easily by using the probability density function (pdf) of p to
find avalue, 3, from

(4) a =[5 pdf (pHip

such that if ,(x)<p, then egn. (3) holds.

Linearly constrained problems with normally distributed stochastic parameters can aso be handled
efficiently. Consider, for example, a congraint of the form

(5) Pria (Mx +) <bf> a

where a is a normally distributed vector with mean a and covariance P,. Since aT(Mx +c¢) isalinear
transformation of a, then it is normally distributed. The mean of aT(Mx+c) is ET(MX+C) and its
variance

(6) Var%\T(Mx+c)):(Mx+c)TPa(Mx+c)

Using egn. ( 6) we can then rearrange the constraint in egn. ( 5) to the sandard normal form



Pr@aT(Mx+c)—€1T(Mx+c)S b-a' (Mx+c)

5\/(MX+C)TPa(MX+C) \/(Mx+c)TPa(Mx+c)
Then using the value of the confidence level, a, we get

_=T

(8) b-a (Mx+c) > K,
\/(Mx+c)T P,(Mx +c)
where K, is the value of the inverse cumulative digribution function of the standard normal distribution
evaluated at a, usually denoted as F (o). Hence the stochastic constraint of egn. (5) can be recast as the
determinigtic constraint of egn. ( 8). Notethat egn. ( 8), rewritten as
(9) a’ (Mx+0) <b—Kgy(Mx+0)T Py(Mx+c) ,

indicates that merely replacing a by a in egn. ( 5) and then replacing egn. ( 5 ) by the deterministic
inequality

(7) @za
H

(10) a (Mx+c)<b
isnot correct, because it can lead to violation of the constraint
(11) a, (Mx+c)<b

where & is aredlization of the random variable a, with high probability. As will become clear in the
sequel, this observation is important for MPC systems employing uncertain models in which parameters
appear linearly (e.g., linear, Volterra, Hammerstein, Wiener, etc.) and output inequality constraints.

Chance-Constrained MPC

Consider a process whose output y must stay below an upper bound Y. That requirement would normally
be trandated into a set of MPC constraints of the form
(12) y(k+i|k)SymaX, i=1---,n.
that would have to be incorporated in an optimization problem solved at time k. Process output constraints
such asin egn. ( 12 ), included in the MPC on-line optimization problem over a finite horizon, involve
prediction of future values of process outputs y(k + i|k) . This prediction is made with the use of a model
and is never exact. One way to describe the uncertainty in future output predictions is to consider (a)
uncertainty in the model describing the effect of manipulated variables on process outputs, and (b)
uncertainty in future disturbances. Both kinds of uncertainty are difficult to capture. For example, model
uncertainty may be described as parametric uncertainty or structural uncertainty. Smilarly, disturbance
uncertainty may be described in terms of a stochastic model, but that model may vary drastically with time.
Therefore, quantification of the uncertainty of future output predictions cannot possibly capture all possible
cases. In this paper we will focus on a particular case described in detail below.

The future output prediction y(k +i | k) , made at timek, is given by the linear model

N
(13) y(k+i|k):Zhju(k+i—j|k)+d(k+i|k)
£

The above model can be used for stable processes, for which it can capture dynamics of any order. The
prediction made by the above model has two sources of uncertainty: (a) the uncertain coefficients h;, and
(b) the uncertain future disturbance d(k+i|k). To simplify the presentation, we will assume that

d(k+i|k)=d(k|k). Moreover, wewill assumethat d(k |k) can be estimated as

(14) e+ 1K= dk )= y0) - 3 Py~ 1)
2

In practice, egn. ( 14 ) implies that the disturbance does not contain any high frequency components, or that
these frequencies are filtered out in the feedback path. After substitution and rearrangement using the

relationships s; = Zijzlhi , 1=12,---, between the step and impulse response coefficients 5 and h;,



respectively, and Au(k) = u(k) —u(k —1) , the impacts of future control moves and past control moves are
Separated, as

i N-1

(15) ylk+i k)= saulc+i - jk)+ 3 (5. - ulk- )+ yK)
=1 =1

or in vector/matrix notation,

(16) ylk+i|k)=s"DLAuy +5T(F|+1—F1)A'Jp+y(k)

where sOON; Au; O0O™ and Au, OON™ are the future and past input moves, respectively;, p<N;
and thematrices D;, Fj and L are asfollows:
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If the coefficient vector s is arandom variable, then, by eqn. ( 16 ) the output y(k + i|k) is al'so random.
Consequently, instead of the constraintsin egn. ( 12 ), one hasto consider constraints of the form

(17) Pr{y(k+i|K) <y }=0a,i=1n;
Using egn. ( 16 ) to substitute y(k +i[k) into the above equation yields
(18) Pr{ST(DiLAUf +(F|+1— Fl)Aup)S Ymax — y(k)}za, i=1-,ng

The above equation is of the form of egn. (5). Assuming that sis normally distributed with mean s and
covariance P, one can use egn. (9 ) to convert egn. ( 18) to its deterministic counterpart

= (DjLAu + (IZI - Fl)Au p) < Yinax — y(k)
=Ko/ (D1LAU ¢ +(Fyq —F)AU )T P(DLAU ¢ + (g — Fy AU )
where the decision variable isthe vector Au .

i :]_'...,nc

(19)

Remarks
e Theconstraintin egn. ( 19) is convex. Indeed, the above constraint can be written as

(20) _STDi LAu ¢ +s' (FI +17 Fl)Au pt y(k)+ Ka I:>SO.5(Di LAu¢ +(F| +17 Fl)Au p}‘z < Ymax

The linear part of the constraint is trivially convex, with all norms being convex as well. Using this
form, we show that the constraint is convex, deterministic and is easily incorporated into the standard
modd predictive control algorithm.

*  When the MPC on-line optimization problem becomes infeasible due to excessively tight output
constraints, those constraints can be softened through the introduction of additional softening variables,
(zafiriou and Chiou, 1993), as



(21) Pr{y(K+i[K) < Ymax +&} 20, i =10
In that case egn. ( 18 ) becomes

(22) Pr{sT ([DiL —1][Auf si]r + (Fi+1—F1)Aup)s Ymax — y(k)}za, i=1---,ng
which, in turn, can be converted to a corresponding deterministic inequality using egn. (9).

*  For an output constrained MPC system employing a process model with uncertain parameters, a smple
determinigtic constraint of the form

(23) ST (DiLAus + (Fag ~F)AUR) < Yima = ¥(K), T =101
is usually formulated. That constraint fails to account for the uncertainty in the process model
parameters, captured by thelast termin egn. ( 19). That term involves the covariance matrix Ps of the
model parameters, which isusually obtained in standard | east-squares identification experiments, along
with the parameter estimates.

*  Onealternative for the enforcement of output constraints in the presence of process model uncertainty
would be to simply tighten those bounds, independently of process inputs. However, there are two
difficulties with that approach: (&) Process output bounds may have to be made excessively tight, thus
making the overall closed-loop system unnecessarily conservative, and (b) To avoid that conservatism,
output bounds may not be made tight enough, thus resulting in possible violation of output constraints.

Case Study

Process

A continuous-time, 5-state dynamic model of a high-purity distillation process from Skogestad and
Postlethwaite (1996), sampled at arate of 2 minutes, was used to analyze the chance constraint formulation.
The purity in the two output streams was to be controlled by reflux ratio and boil-up rate in an L/V
feedback control configuration as shown in Figure 1.

H/

Figure1

The process modd is nearly singular resulting in poorly conditioned output constraints. The Hessian of the
quadratic MPC on-line objective is also poorly conditioned resulting in a challenging optimization
problem.

I dentification



The system used in the simulations is a multivariable system with 2 inputs and 2 outputs, with n. chance
constraints applied to each individua output. Thus there is a constraint softening term for each output at
each of the n. predictions into the future, yielding atotal of 2n. constraint softening terms. Each output is
predicted on the basis of the two FIR models corresponding to the two inputs. Using a vector
representation, the moddl is arranged as follows:

y1 Ez %Il 512 Cruy B

H.H &L 552%125

To develop a process modd and uncertainty description for the purpose of demonstrating our method, we
generated output data from the aforementioned state space model using a pseudo random binary sequence
(PRBS) input with an amplitude of 1. The output data was then corrupted with normally distributed noise
with a given signal to noise ratio between 11 and 18. Standard |east-squares techniques were then used to
identify multi-input-single-output (M1SO) finite impulse response (FIR) models for each output using the
corrupted data.

Three models were generated which show the benefits of chance constrained model predictive
control. Each modd was identified usng a different number of input-output data points: 200, 500 and
1000; and similar signal-to-noise ratios, yielding models with differing levels of uncertainty. Figure 2,
Figure 3, and Figure 4 show the impul se response coefficients and their corresponding covariance matrices.
Each of these models was then utilized in the creation of two model predictive controllers, the first

corresponding to standard output constrained MPC, and the second corresponding to MPC with chance
congtraints.
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Chance Congtraints
The directions of maximum uncertainty for the three models can be determined from the following
optimization problem, according to egn. (19 ):

max x T Px
X

st. -1<x(i)<l, i=12
Each moddl identified used a different Hessian for this mathematica programming problem:

_076500* -2.95M10°0

=0 0
20 529510° 1.14M0°

_[b70M0* 4.83M0°0

=0 0
0 m.8310° 7.93007F

_[528M0* 2.4400°0

10075 4410 54110 F

The problem to be solved is the maximization of a convex function over a convex set (eguivalent to the
minimization of a concave function over a convex set) which, in genera, is NP-hard (Horst and Tuy,
1990). The solutions of such problems are aways found on the boundary of the feasible region. For a
problem with very small dimensionality and symmetry, this problem does not present any significant
difficulty. The problem can be solved using standard constrained nonlinear optimization techniques and
the symmetry of the constraints and objective can be used to determine any degenerate solutions to the
problem. The optimization gives solutions at the four corners of the feasible region: (1,1), (1,-1), (-1,1) and
(-1,-1); depending on the starting point of the optimization problem. By inspecting the values of the
objective function at these points, the true optima can be determined. The first objective, X" Py X, predicts
the optimato be at the points (1,-1) and (-1,1). The two subsequent objectives show the optimato be at the
points (1,1) and (-1,-1). Due to the gains and the ill-conditioning of the system, the optima for the latter
two objectives agree with the nature of the system. This can be seein Figures 2, 3 and 4. Since the cross-
correlation for the variables arerather amall, the smallest data set actually estimated the cross-correlation to
be negative, thusthe change in direction is due to the stochastic nature of the identification.

Results

Results for the three models are shown in Figure 5, Figure 6, and Figure 7. These figures show the closed-

loop responses of the two outputs (top and bottom temperatures) to setpoint step change in the top
temperature, output 1, of magnitudex28®. The bottom temperature, output 2, was constrained by a
lower bound of —£10° and for the chance constrained MPC the probability of constraint violation was set
to 0.01. Figure 8 shows that application of standard MPC to that system resulted in frequent and large
violations of the output bound. In contrast, application of chance-constrained Mie€eded in
preventing violation of the output bound. All simulations were accomplished in a Matlab environment
using the Numerical Analysis Group (NAG) nonlinear constrained optimizer and the controller described in
Table 1.



Tablel1

Input Output constraint
Control horizon move | Prediction horizon . ' Confidence
MPC parameter m weight D softenmcglj weight level, o
r
m-1 iy 2 P , P2 Py _Ffaygzu
MPC terms ry Au(k+ik) Y (yk+if) - y™) ¥ Yimax * € O egn. (1)
i=0 i=1 2
ge
Standard output 0.02 3
constrained MPC 4 14 10 na
Chance 0.02
Constrained 4 14 3 99%
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One way of attempting to deal with the problems associated with standard output constrained
MPC is to tighten the bounds placed on the process outputs. The following figures show how this
procedure can till lead to output bounds violation. Process outputs are predicted based on the process
modd. Sincethis model is uncertain, the output can be predicted to be within bounds while in actuality the
In the case examined here, the bound is close to the setpoint so that even
placing the bound at the set point causes bounds violation. Note that placing the bound above the set point

output violates the bounds.
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Discussion and future research

In this work, we focused on robustness of constrained MPC with respect to satisfaction of process output
congtraints by a closed-loop MPC system that employs an uncertain process model. We proposed to
enhance MPC robustness by formulating process output constraints as chance constraints. Simulations
comparing the performance of the chance-constrained MPC formulation versus that of standard MPC with
output constraints showed the ability of the proposed approach to improve the robustness of MPC with
respect to output constraint satisfaction. For the high-purity distillation column, a nearly singular system,
studied in the simulations the original output constraints were violated frequently and to a large degree
when gtandard MPC was used, even with extremely large penaties on the constraint softening variable €.
With the use of chance constraints, violation of output constraints was drastically reduced or eliminated.

While chance output constraints were used in this work within a standard MPC framework, there
are several possihilities for using chance constraints in other control frameworks, such as gabilization of
uncertain processes or combined MPC and identification where process modeling uncertainty can be
naturally incorporated in the on-line optimization problem. In addition, uncertainty in future output
predictions due to stochastic disturbances may also be incorporated in the proposed framework.

Acknowledgment: Special thanks to Profs. David Olson and Kurt Bretthauer of the Business Analysis

Dept., Texas A&M University for sharing their chance-constrained optimization experience with the
authors.
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