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Abstract
This work focuses on robustness of model predictive control (MPC)
with respect to satisfaction of process output constraints.  A method of
improving such robustness is presented.  The method relies on
formulating output constraints as chance constraints using the
uncertainty description of the process model.  The resulting on-line
optimization problem is convex.  The proposed approach is illustrated
through a simulation case study on a high-purity distillation column.
Suggestions for further improvements are made.

Introduction

Robustness is a highly desirable property for process control systems.  Qualitatively speaking, a controller
is robust if it results in actual closed-loop behavior that does not deviate unacceptably from the nominal
closed-loop behavior, which, in turn, corresponds to a nominal process behavior.  For example, a model-
based controller results in robust closed-loop stability if the closed loop is stable even if there is a
discrepancy between the model used by the controller and the actual process behavior.  The extent of such
discrepancy for which closed-loop stability is maintained corresponds to the degree of robustness of that
controller.  Although necessary, robust stability is usually not sufficient for good controller performance.
Other closed-loop properties may have to be maintained in the presence of discrepancy between the
nominal behavior of a process and its actual one.  For instance, the resulting regulation error magnitude
(e.g. its 2-norm or ∞-norm) in a feedback loop has to remain “small” in the presence of nominal/actual
process behavior discrepancy.  Such a requirement is frequently referred to as robust performance.  Along
with robust stability, robust performance, as defined in the previous sentence, has been studied extensively.
However, as explained above, there are many more properties that capture closed-loop performance.  One
such property, particularly important for constrained model predictive control (MPC) systems, is the
satisfaction of various inequality constraints.

Inequality constrained MPC systems rely on the on-line optimization of an objective function over
a future moving horizon, subject to various constraints.  At each time step, process measurements are used
to formulate the on-line optimization problem whose solution determines an optimal input, which is fed to
the process.

The robustness of unconstrained MPC has been studied extensively.  Since an unconstrained MPC
system is equivalent to a linear time-invariant system, robust unconstrained MPC analysis and synthesis
methods relying on either time-domain or frequency-domain descriptions can be used.  Discussions of
frequency-domain and time-domain methods can be found in Morari and Zafiriou (1989) and Mosca
(1995), respectively.  For constrained MPC systems, the study of robustness has several facets, and is at a
less mature stage.  Robust stability results for constrained MPC, within the framework set by Rawlings and
Muske (1993), have been presented by a number of investigators, including Genceli and Nikolaou (1993),
Michalska and Mayne (1993), Zheng and Morari (1993), Chen and Allgöwer (1996), Lee and Yu (1997),
Badgwell (1997), De Nicolao et al. (1998).  The purpose of this work is to examine a different aspect of
constrained MPC robustness, namely robustness with respect to satisfaction by the actual system of
inequality constraints posed in the on-line optimization problem.  While inequality constraints that place
bounds on process inputs can be easily satisfied by the actual system, constraints on process outputs are
more elusive.  That is because future process outputs within an MPC moving horizon have to be predicted
on the basis of a process model (involving the effects of manipulated inputs and disturbances on process
outputs).  Because the model involves uncertainty, process output predictions are also uncertain.  This
uncertainty in process output predictions may result in adverse violation of output constraints by the actual
closed-loop system, even though predicted outputs over the moving horizon might have been properly
constrained.  Consequently, a method of incorporating model uncertainty into the output constraints of the
on-line optimization is needed.  This would improve the robustness of constrained MPC.  In this paper, we
introduce an approach towards achieving that goal.

The proposed approach relies on formulating output constraints of the type maxmin yyy ≤≤  as
chance constraints of the type
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( 1 ) { } α≥≤≤ maxminPr yyy
where Pr{A} is the probability of event A occurring, y is the process output bounded by ymin and ymax, and
α is the specified probability, or confidence level, that the output constraint would be satisfied.  Under the
assumption that the process output y is predicted by a linear model with normally distributed coefficients,
the above chance constraint can be reformulated as a convex, deterministic constraint on process inputs.
This new constraint can then be readily incorporated into the standard MPC formulation.  The resulting on-
line optimization problem can be solved using reliable convex optimization algorithms.

The rest of the paper is structured as follows:  We first provide a brief overview of stochastic
programming and chance-constraint optimization.  Next, we show how the MPC on-line optimization
problem can be cast as a chance constraint problem.  Subsequently, we present an example of using chance-
constrained MPC on a high-purity distillation column, an ill-conditioned system.  Finally, we draw
conclusions and make suggestions for further research.

Stochastic Programming and Chance-Constraint Optimization

Stochastic programming is an optimization technique in which the constraints or objective function of an
optimization problem contain stochastic parameters.  Chance-constrained optimization is one method of
stochastic programming that attempts to reconcile optimization over uncertain constraints.  The constraints,
which contain stochastic parameters, are guaranteed to be satisfied with a certain probability at the
optimum found.  A typical chance constrained stochastic programming problem has the following form
(Birge and Louveaux, 1997):
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where nℜ∈x  is the decision variable vector, ℜ∈)(xf , 1)(1
mℜ∈xg , and 2),(2

mℜ∈xpg  contains the

stochastic parameter vector pℜ∈p .  If the probability density function of p is known, then the

probabilistic constraint { }≥≤ 0xpg ),(Pr 2  can, in principle, be substituted by a deterministic constraint of

the form 0xg ≤)(3 , so that the entire optimization problem can be handled as an ordinary nonlinear
programming problem.

Depending on the form of g2, the explicit form of g3 may be difficult to obtain.  The task of
developing an explicit closed form for g3 is greatly simplified if g2 is affine in the parameter vector p, i.e.

)()(),(2 xbpxAxpg += , where pm ×ℜ∈ 2)(xA .
For situations in which the stochastic parameters p can be separated from the decision variable x

in a constraint such as
( 3 ) ( ){ } α≥≤ pxg2

~Pr
the deterministic equivalent can be found fairly easily by using the probability density function (pdf) of p to
find a value, β, from

( 4 ) ( ) pp d∫∫
∞= βα pdfL

such that if ( ) β≤x2
~g , then eqn. ( 3 ) holds.

Linearly constrained problems with normally distributed stochastic parameters can also be handled
efficiently.  Consider, for example, a constraint of the form

( 5 ) { } α≥≤+ bT )(Pr cMxa

where a is a normally distributed vector with mean a  and covariance Pa.  Since )( cMxa +T  is a linear

transformation of a, then it is normally distributed.  The mean of )( cMxa +T  is )( cMxa +T  and its
variance

( 6 ) ( ) )()()( cMxPcMxcMxa a ++=+ TTVar

Using eqn. ( 6 ) we can then rearrange the constraint in eqn. ( 5 ) to the standard normal form



4

( 7 ) α≥












++

+−≤
++

+−+

)()(

)(

)()(

)()(
Pr

cMxPcMx

cMxa

cMxPcMx

cMxacMxa

aa
T

T

T

TT b

Then using the value of the confidence level, α, we get
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where Kα is the value of the inverse cumulative distribution function of the standard normal distribution

evaluated at α, usually denoted as ( )α−1F .  Hence the stochastic constraint of eqn. ( 5 ) can be recast as the
deterministic constraint of eqn. ( 8 ).  Note that eqn. ( 8 ), rewritten as

( 9 ) )()()( cMxPcMxcMxa a ++−≤+ TT Kb α ,

indicates that merely replacing a by a  in eqn. ( 5 ) and then replacing eqn. ( 5 ) by the deterministic
inequality

( 10 ) bT ≤+ )( cMxa
is not correct, because it can lead to violation of the constraint

( 11 ) bT
r ≤+ )( cMxa

where ar is a realization of the random variable a, with high probability.  As will become clear in the
sequel, this observation is important for MPC systems employing uncertain models in which parameters
appear linearly (e.g., linear, Volterra, Hammerstein, Wiener, etc.) and output inequality constraints.

Chance-Constrained MPC

Consider a process whose output y must stay below an upper bound ymax.  That requirement would normally
be translated into a set of MPC constraints of the form
( 12 ) max)( ykiky ≤+ , cni ,,1L=
that would have to be incorporated in an optimization problem solved at time k.  Process output constraints
such as in eqn. ( 12 ), included in the MPC on-line optimization problem over a finite horizon, involve
prediction of future values of process outputs )( kiky + .  This prediction is made with the use of a model

and is never exact.  One way to describe the uncertainty in future output predictions is to consider (a)
uncertainty in the model describing the effect of manipulated variables on process outputs, and (b)
uncertainty in future disturbances.  Both kinds of uncertainty are difficult to capture.  For example, model
uncertainty may be described as parametric uncertainty or structural uncertainty.  Similarly, disturbance
uncertainty may be described in terms of a stochastic model, but that model may vary drastically with time.
Therefore, quantification of the uncertainty of future output predictions cannot possibly capture all possible
cases.  In this paper we will focus on a particular case described in detail below.

The future output prediction )|( kiky + , made at time k, is given by the linear model

( 13 ) ( ) ( ) ( )kikdkjikuhkiky
N

j
j |||

1

++−+=+ ∑
=

The above model can be used for stable processes, for which it can capture dynamics of any order.  The
prediction made by the above model has two sources of uncertainty:  (a) the uncertain coefficients hj, and
(b) the uncertain future disturbance ( )kikd |+ .  To simplify the presentation, we will assume that

( ) ( )kkdkikd || =+ .  Moreover, we will assume that ( )kkd |  can be estimated as

( 14 ) ( ) ( ) ( )∑
=

−−==+
N

j
j jkuhkykkdkikd

1
)(||

In practice, eqn. ( 14 ) implies that the disturbance does not contain any high frequency components, or that
these frequencies are filtered out in the feedback path.  After substitution and rearrangement using the

relationships ∑ == j
i ij hs 1 , L,2,1=j , between the step and impulse response coefficients sj and hI,
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respectively, and )1()(ˆ)( −−=∆ kukuku , the impacts of future control moves and past control moves are

separated, as

( 15 ) ( ) ( ) ( ) ( ) ( )kyjkusskjikuskiky
N
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or in vector/matrix notation,

( 16 ) ( ) ( ) ( )kykiky pi
T

fi
T +∆−+∆=+ + uFFsuLDs 11|

where Nℜ∈s ;  m
f ℜ∈∆u  and 1−ℜ∈∆ N

pu  are the future and past input moves, respectively;  Np < ;

and the matrices Di, Fi and L are as follows:
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If the coefficient vector s is a random variable, then, by eqn. ( 16 ) the output )( kiky +  is also random.

Consequently, instead of the constraints in eqn. ( 12 ), one has to consider constraints of the form
( 17 ) α≥≤+ })|(Pr{ maxykiky , cni ,,1L=
Using eqn. ( 16 ) to substitute )( kiky +  into the above equation yields

( 18 ) ( )( ) ( ){ } α≥−≤∆−+∆ + kyypifi
T

max11Pr uFFuLDs ,  cni ,,1L=

The above equation is of the form of eqn. ( 5 ).  Assuming that s is normally distributed with mean s  and
covariance Ps, one can use eqn. ( 9 ) to convert eqn. ( 18 ) to its deterministic counterpart

( 19 )
( ) ( )

( ) ( ) )()(

)(

1111

max11
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T
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pifi
T

K

kyy

uFFuLDPuFFuLD
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s ∆−+∆∆−+∆−

−≤∆−+∆

++

+

α

,  cni ,,1L=

where the decision variable is the vector fu∆ .

Remarks
• The constraint in eqn. ( 19 ) is convex.  Indeed, the above constraint can be written as

( 20 ) ( ) ( ) ( )( ) max
2

11
5.0

11 yKky pifipi
T

fi
T ≤∆−+∆++∆−+∆ ++ uFFuLDPuFFsuLDs sα  

The linear part of the constraint is trivially convex, with all norms being convex as well.  Using this
form, we show that the constraint is convex, deterministic and is easily incorporated into the standard
model predictive control algorithm.

• When the MPC on-line optimization problem becomes infeasible due to excessively tight output
constraints, those constraints can be softened through the introduction of additional softening variables,
(Zafiriou and Chiou, 1993), as
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( 21 ) αε ≥+≤+ })(Pr{ max iykiky , cni ,,1L=
In that case eqn. ( 18 ) becomes

( 22 ) [ ][ ] ( )( ) ( ){ } αε ≥−≤∆−+∆− + kyypi
T

ifi
T

max111Pr uFFuLDs ,  cni ,,1L=
which, in turn, can be converted to a corresponding deterministic inequality using eqn. ( 9 ).

• For an output constrained MPC system employing a process model with uncertain parameters, a simple
deterministic constraint of the form

( 23 ) ( ) ( )kyypifi
T −≤∆−+∆ + max11 )( uFFuLDs ,  cni ,,1L=

is usually formulated.  That constraint fails to account for the uncertainty in the process model
parameters, captured by the last term in eqn. ( 19 ).  That term involves the covariance matrix Ps of the
model parameters, which is usually obtained in standard least-squares identification experiments, along
with the parameter estimates.

• One alternative for the enforcement of output constraints in the presence of process model uncertainty
would be to simply tighten those bounds, independently of process inputs.  However, there are two
difficulties with that approach:  (a) Process output bounds may have to be made excessively tight, thus
making the overall closed-loop system unnecessarily conservative, and (b) To avoid that conservatism,
output bounds may not be made tight enough, thus resulting in possible violation of output constraints.

Case Study

Process
A continuous-time, 5-state dynamic model of a high-purity distillation process from Skogestad and
Postlethwaite (1996), sampled at a rate of 2 minutes, was used to analyze the chance constraint formulation.
The purity in the two output streams was to be controlled by reflux ratio and boil-up rate in an L/V
feedback control configuration as shown in Figure 1.

Figure 1

The process model is nearly singular resulting in poorly conditioned output constraints.  The Hessian of the
quadratic MPC on-line objective is also poorly conditioned resulting in a challenging optimization
problem.

Identification
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The system used in the simulations is a multivariable system with 2 inputs and 2 outputs, with nc chance
constraints applied to each individual output.  Thus there is a constraint softening term for each output at
each of the nc predictions into the future, yielding a total of 2nc constraint softening terms.  Each output is
predicted on the basis of the two FIR models corresponding to the two inputs.  Using a vector
representation, the model is arranged as follows:

( 24 ) 
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To develop a process model and uncertainty description for the purpose of demonstrating our method, we
generated output data from the aforementioned state space model using a pseudo random binary sequence
(PRBS) input with an amplitude of 1.  The output data was then corrupted with normally distributed noise
with a given signal to noise ratio between 11 and 18.  Standard least-squares techniques were then used to
identify multi-input-single-output (MISO) finite impulse response (FIR) models for each output using the
corrupted data.

Three models were generated which show the benefits of chance constrained model predictive
control.  Each model was identified using a different number of input-output data points: 200, 500 and
1000; and similar signal-to-noise ratios, yielding models with differing levels of uncertainty.  Figure 2,
Figure 3, and Figure 4 show the impulse response coefficients and their corresponding covariance matrices.
Each of these models was then utilized in the creation of two model predictive controllers, the first
corresponding to standard output constrained MPC, and the second corresponding to MPC with chance
constraints.
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Chance Constraints
The directions of maximum uncertainty for the three models can be determined from the following
optimization problem, according to eqn. ( 19 ):

2,1      ,)(     ..

       max

=≤≤ ii-ts

T

1x1

Pxx
x

Each model identified used a different Hessian for this mathematical programming problem:
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The problem to be solved is the maximization of a convex function over a convex set (equivalent to the
minimization of a concave function over a convex set) which, in general, is NP-hard (Horst and Tuy,
1990).  The solutions of such problems are always found on the boundary of the feasible region.  For a
problem with very small dimensionality and symmetry, this problem does not present any significant
difficulty.  The problem can be solved using standard constrained nonlinear optimization techniques and
the symmetry of the constraints and objective can be used to determine any degenerate solutions to the
problem.  The optimization gives solutions at the four corners of the feasible region: (1,1), (1,-1), (-1,1) and
(-1,-1); depending on the starting point of the optimization problem.  By inspecting the values of the
objective function at these points, the true optima can be determined.  The first objective, xT P200 x, predicts
the optima to be at the points (1,-1) and (-1,1).  The two subsequent objectives show the optima to be at the
points (1,1) and (-1,-1).  Due to the gains and the ill-conditioning of the system, the optima for the latter
two objectives agree with the nature of the system.  This can be see in Figures 2, 3 and 4.  Since the cross-
correlation for the variables are rather small, the smallest data set actually estimated the cross-correlation to
be negative, thus the change in direction is due to the stochastic nature of the identification.

Results
Results for the three models are shown in Figure 5, Figure 6, and Figure 7.  These figures show the closed-
loop responses of the two outputs (top and bottom temperatures) to setpoint step change in the top
temperature, output 1, of magnitude –5×10-3.  The bottom temperature, output 2, was constrained by a
lower bound of –1×10-3 and for the chance constrained MPC the probability of constraint violation was set
to 0.01.  Figure 8 shows that application of standard MPC to that system resulted in frequent and large
violations of the output bound.  In contrast, application of chance-constrained MPC succeeded in
preventing violation of the output bound.  All simulations were accomplished in a Matlab environment
using the Numerical Analysis Group (NAG) nonlinear constrained optimizer and the controller described in
Table 1.
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Table 1
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One way of attempting to deal with the problems associated with standard output constrained
MPC is to tighten the bounds placed on the process outputs.  The following figures show how this
procedure can still lead to output bounds violation.  Process outputs are predicted based on the process
model.  Since this model is uncertain, the output can be predicted to be within bounds while in actuality the
output violates the bounds.  In the case examined here, the bound is close to the setpoint so that even
placing the bound at the set point causes bounds violation.  Note that placing the bound above the set point
would cause offset.
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Discussion and future research

In this work, we focused on robustness of constrained MPC with respect to satisfaction of process output
constraints by a closed-loop MPC system that employs an uncertain process model.  We proposed to
enhance MPC robustness by formulating process output constraints as chance constraints.  Simulations
comparing the performance of the chance-constrained MPC formulation versus that of standard MPC with
output constraints showed the ability of the proposed approach to improve the robustness of MPC with
respect to output constraint satisfaction.  For the high-purity distillation column, a nearly singular system,
studied in the simulations the original output constraints were violated frequently and to a large degree
when standard MPC was used, even with extremely large penalties on the constraint softening variable ε.
With the use of chance constraints, violation of output constraints was drastically reduced or eliminated.

While chance output constraints were used in this work within a standard MPC framework, there
are several possibilities for using chance constraints in other control frameworks, such as stabilization of
uncertain processes or combined MPC and identification where process modeling uncertainty can be
naturally incorporated in the on-line optimization problem.  In addition, uncertainty in future output
predictions due to stochastic disturbances may also be incorporated in the proposed framework.

Acknowledgment:  Special thanks to Profs. David Olson and Kurt Bretthauer of the Business Analysis
Dept., Texas A&M University for sharing their chance-constrained optimization experience with the
authors.
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