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Abstract
A new formulation of MPCI is proposed. The on-line objective is not to minimize the sum of square errors, but to
maximize on-line the sum of the lower bounds on the minimum eigenvalues of the information matrices over finite
horizons.  In that way, inputs to the process are allowed to excite the process highly enough to generate as much
modeling information as possible, while the process goes off-spec as little as possible. In this formulation control
objective is satisfied with output constraints. Constraints can be loosened or tightened according to need of
identification. The effectiveness of the proposed new methodology is illustrated through simulations on a linear
time-varying process.

1. Introduction
Model Predictive Control (MPC) is a class of computer control algorithms that explicitly use a process model to
predict future plant outputs and compute appropriate control action through on-line optimization of a cost objective
over a future horizon, subject to various constraints.  Performance of MPC could become unacceptable due to a very
inaccurate model, thus requiring a more accurate model.  Such a model frequently has to be developed while the
process is kept under MPC.  This task is an instance of closed-loop identification and adaptive control.  The
difficulty of closed-loop identification is that the input of the process to be identified is not directly selected by the
designer but ultimately by the feedback controller.  According to a standard closed-loop identification approach, the
designer may indirectly influence the process input by exciting the feedback loop through external dithering signals
(Anderson and Johnson, 1982).  The difficulty of this approach lies in the fact that the effect of the external dithering
signals on the process input depends on the entire closed loop, which includes the process to be identified.
Consequently, guaranteeing that the process input will indeed be good for identification is not always easy and
hinges on assumptions such as knowing exactly the order of the process model, or assuming that input constraints
are not an issue.

Of course, external excitation is not necessary for closed-loop identification.  The self-tuning regulator
(STR) with relay (Åström and Wittenmark, 1989, p. 332), for example, is a simple method that uses a non-invertible
controller (relay) to get around the trap of identifying the plant as minus the inverse of the controller (Nikolaou,
1998).  Similarly, the Ziegler-Nichols ultimate-cycling tuning method (Ziegler and Nichols, 1942) uses a time-
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varying feedback gain to identify a linear time-invariant process, an idea that has strong theoretical justification
(Ljung, 1987, p. 366).  No inputs external to the loop are used in either case.  Example 2 below shows that closed-
loop identification is possible even for a linear time invariant process with a proportional controller without any
external excitation.

A key requirement for identification, either in open or closed-loop mode, is that data relevant to the
structure of the model to be identified demonstrate persistent excitation (PE).  By ensuring that a corresponding
information matrix is invertible, PE ensures that the least-squares problem corresponding to parameter identification
has a unique solution (see section 2).  When closed-loop identification is coupled with controller adaptation, lack of
PE may result in chaotic bursting phenomena, where the process outputs exhibit intermittent short periods of bursts,
followed by periods of quiescence (Anderson, 1985; Ydstie, 1997).  Of course, if prior knowledge is available about
the process to be identified, then PE in its standard form as an invertibility requirement on the information matrix
may not be necessary, because the least-squares minimization is constrained to produce parameter values within a
certain set (Lozano and Zhao, 1994).

Focusing on the essential role of PE in closed-loop identification, Genceli and Nikolaou (1996) introduced
the simultaneous MPC and identification (MPCI) adaptive control paradigm.  MPCI resorts to on-line optimization.
An objective function over a moving horizon is minimized with respect to process inputs that satisfy all
conventional MPC constraints and, in addition, a constraint that data be persistently exciting for the structure of the
model being identified.   Advantages of MPCI are that it does not require any explicit external dithering signals, PE
is trivially dependent on the feasibility of the on-line optimization (by construction of the algorithm), constraints on
process inputs are explicitly enforced, and constraints on process outputs are explicitly handled.

While the MPCI formulation may include a standard control objective, it provides wide flexibility for
defining different objectives as well.  For example, one could completely forego the on-line minimization of the sum
of future square errors (which attempts to keep outputs at their setpoints) and simply attempt to keep outputs within
specification limits during identification, while maximizing the information about the process to be identified.  This
brings us to the contribution of this work, namely the formulation of an MPCI variant with the following
modification:  Process outputs are free to move away from setpoints, as long as they remain within specification
bounds.  The on-line objective is not to minimize the sum of square errors, but to maximize on-line the
“magnitudes” (sum of the lower bounds on the minimum eigenvalues) of the information matrices over finite
horizons.  In that way, inputs to the process are allowed to excite the process as much as possible, for the generation
of maximum parameter information, while the process output violates specification bounds as little as possible.
Advantages of the proposed variant include the following:

(a) Easier controller design, through simplification of the on-line objective.
(b) Reduced computational load for the on-line optimization, by rendering the objective linear.
(c) Better satisfaction of realistic closed-loop identification goals, through replacement of setpoint tracking by

output constraints.
The rest of this article is structured as follows:  We first discuss the role of PE in identification and show

how it naturally leads to MPCI.  Next, we give a brief overview of the standard MPCI formulation.  We then
introduce a new MPCI variant and outline the solution of the corresponding on-line optimization problem via
successive semidefinite programming (SSDP).  We illustrate the new variant with computer simulations in which we
make comparisons among a number of adaptive MPC variants and MPCI.  Finally, we discuss further possibilities
for MPCI.

2. PE and MPCI
The role of PE in identification has long been emphasized by a number of authors.  We will discuss below a classic
example found in several identification and adaptive control textbooks, such Åström and Wittenmark (1989, p. 82),
Ljung (1987, p. 365), and Söderström and Stoica (1989, p. 26).

Example 1

The process to be identified is described by

( 1 ) )()1()1()( kekbukayky +−+−=
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where the disturbances e(k) are independent and identically distributed (i.i.d.) random variables with zero mean
(white noise).  The parameters a and b have to be estimated while the process is controlled by a proportional
regulator with gain K:
( 2 ) )()( kKyku −=

A standard analysis of this example proceeds as follows:  From the above two equations we get that the
closed-loop behavior of the above system is
( 3 ) )()1()()( kekybKaky +−−=

which implies that all models )ˆ,ˆ( ba  with

( 4 )
γ+=

γ+=
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Kaa

ˆ

ˆ

where γ is an arbitrary scalar, will give the same input-output description of the process as the model ),( ba  under

the proportional controller feedback.  Therefore, the parameters a and b cannot be estimated, although the process
input u is persistently exciting, as a result of white noise going through a first-order process:
( 5 ) )()1()()( kKekubKaku −−−=
Hence, “persistence of excitation is not a sufficient condition on the input in closed-loop experiments”  (Ljung, 1987,
p. 366).  The preceding statement, which is entirely correct, must be interpreted very carefully, because it might
leave the impression that PE on process inputs is the only kind of excitation that would make identification possible.
However, it is the richness (PE) of the data that appear in the information matrix that matters more.  In fact, PE of
process inputs is sufficient for process identification, whether in open or closed-loop, provided the process is
modeled by an FIR model and noise is white.  Let us explain the situation by looking at the above example in a
slightly different way.

If least-squares identification of the above process were attempted, then it would require the minimization
of
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with respect to the parameters )ˆ,ˆ( ba , at each time instant k.  This minimization would, in turn, necessitate the
solution of the linear system of equations
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But the matrix X, and consequently the matrix )( XXT , has rank 1, because the second column of X is equal to the
first column times (–K), due to the presence of the proportional feedback controller, eqn. ( 2 ).  Therefore, eqn. ( 7 )
does not have a unique solution but a one-dimensional family of solutions, captured by eqn. ( 4 ), and consequently
identification of ),( ba  is not possible.

It is evident that for the DARX model structure considered for this process, PE on process inputs alone is
not immediately relevant to identification of the process.  Instead, requirements should be placed on both process
inputs and outputs, so that

(a) the pseudo-inverse of X can exist,

(b) the information matrix XXT  is well conditioned,

(c) the matrix X and the noise vector Tkee )]1()...0([ˆ −=e  are uncorrelated, i.e. 0eX =
∞→

T
kk

1lim , for unbiased

estimates (Söderström and Stoica, 1989, p. 186;  Ljung, 1987, p. 178).
The above requirements (a) and (b) correspond to the strong PE condition, referring to data of finite length
(Goodwin and Sin, 1984, p. 73), as contrasted to the weak PE condition that refers to data of infinite length.  MPCI,
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as explained in the next section, explicitly addresses the above requirements (a) and (b), by forcing at each time step

the information matrix XXT  to be well conditioned, namely

( 9 ) 0IXX �� ρT

where the inequality symbol in equation ( 9 ) means that the information matrix XX T  is positive semidefinite.  In
the sequel, the above inequality symbol will denote matrix definiteness whenever the inequality involves matrices
on both sides.  Note that maximization of ρ in eqn. ( 9 ) would also make small the parameter estimate bias

( ) eXXX TT 1−
 (Ljung, 1987, eqn. (7.38)).

Continuing the analysis of the above example, let us assume that instead of the above DARX model, the
following FIR model is used to approximately model the process.   

( 10 ) )()()(
1

keikubky
m

i
i +−= ∑

=
where e is erroneously assumed to be white noise.  Note that the above use of an FIR model is applicable only to
stable processes.  Note, also, that the disturbance model does not agree with the disturbance model of eqn. ( 1 ).  The

process is again under the proportional feedback control of eqn. ( 2 ).  Identification of the parameters m
iib 1}{ =

according to the least-squares method would require minimization of
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with respect to the parameters m
iib 1}ˆ{ = .  This minimization would, in turn, necessitate the computation of the pseudo-

inverse TT UUU 1)( −  of the matrix
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The pseudo-inverse exists if mk ≥ and the matrix U has full rank.  The matrix U, in turn, has full rank if the input u
is persistently exciting, regardless of whether the identification experiment is conducted under open or closed-loop
conditions and regardless of what kind of controller is used.  (Closed-loop conditions will have an effect on the
estimated parameter bias, since there will be correlation between noise and process input.)  For the above closed-
loop system (eqns. ( 1 ) and ( 2 )), the input u is persistently exciting of any order, according to eqn. ( 5 ).

Consequently, unique estimates of the Markov parameters m
iib 1}{ =  can be obtained, even in the absence of signals

externally introduced to the loop.  Of course, according to standard asymptotic analysis, those estimates will be
biased as
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in contrast to the ideal values of the Markov parameters m
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i
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−  for large

values of m.  The bias can be reduced if external dithering signals are used.  Figure 1, showing convergence of
m
iib 1}ˆ{ = , verifies eqns. ( 13 ).

As a final illustration of the above ideas, consider the following Example:

Example 2

Consider least-squares identification of the process

( 14 ) )1()()1()1()( −−+−+−= kaekekbukayky

controlled by proportional feedback as in eqn. ( 2 ).  The process is parametrized by an FIR model as
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where the disturbance model of eqn. ( 15 ) is now correct.  Then, the process input u is persistently exciting of any
order (Ljung, 1987, p. 362).  Indeed, eqn. ( 16 ) multiplied by –K yields
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This means that, for large values of k, the matrix U in eqn. ( 12 ) will be invertible, hence the process will be
approximately identifiable.  This is verified in the simulation of Figure 2.  In fact, this example demonstrates that
external inputs are not necessary in approximate closed-loop identification, although they may be extremely useful,
e.g, in increasing the convergence rate or reducing bias.  What is important is the quality of the data, for example the
condition number of the information matrix, whichever way that result is achieved.

Example 1 and Example 2 above set the stage for the introduction of MPCI as an algorithm that explicitly
requires the invertibility of the information matrix.  Section 3 below gives a brief overview of MPCI, while section 4
introduces a new MPCI variant.

3. The MPCI on-line optimization problem
 Let the following linear time-varying model be used to represent the process at time k.
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The disturbance d in eqn. ( 17 ) is the sum of a constant disturbance plus white noise.  Based on the above, the MPCI
on-line optimization can be formulated as follows (Genceli and Nikolaou, 1996).

MPCI Or iginal On-line Optimization Problem  
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where

( 26 ) )|2()|1(ˆ)|1( kikukikukiku −+−−+=−+∆

( 27 ) [ ]Tskykykyk )1()1()()( +−−= �Y

( 28 ) [ ]1)()2()1( n|kijku|kijku|kijkui|k)j(k T−+−−+−−+−=+−φ 
v and h are weights on the softening variables iε  and µi for the PE lower bounds iρ  and output bounds yman and

ymin, respectively, used only when the on-line optimization with 0=v  and 0=µ i  is infeasible;  w  is the weight on

the square error between setpoint and predicted output;  r is the weight on the move supression term;  λ is a
forgetting factor;  and s refers to the length of the data set used for parameter estimation.  In typical MPC fashion
(Prett and Garcia, 1988), the above optimization problem is solved at time k, and the optimal u(k) is applied to the
process.
Remarks
•  The main difference between MPC and MPCI is equation ( 25 ), the PE constraints.  Switching between MPC

and MPCI is simply a matter of including or excluding eqn. ( 25 ) in on-line optimization.  When to switch from
MPC to MPCI is an interesting and formidable problem on its own right.  To address that problem, additional
information about the operating mode of a process may be helpful.  For example, if a nonlinear process is
moved from one steady-state operating condition to another, then a new local linear model may have to be
identified.  Information from statistics-based controller performance monitoring methods is also valuable, when
such methods attribute poor controller performance to an inaccurate process model.

•  The last entry for the vector φ  in equation ( 28 ) is 1.  This is because, the nonzero average of the disturbance d

is estimated as a component of the vector θ in equation ( 24 ).

•  It is evident from eqns. ( 24 ) and ( 25 ) that an “average” parameter estimate θ  is used for output prediction.
•  Equation ( 22 ) implies that MPCI has an M-periodic sequence of future inputs u(k+i|k).
•  The feasibility of the on-line optimization problem is guaranteed by the existence of the softening variables ει

and µi.  To reduce the dimensionality of the on-line optimization problem, one may assume that µ=µ i  and

ε=ε i .  This will result in minor loss of controller flexibility, because output constraints are important only for

the first few steps of the prediction horizon.  It must be noted that the softening variables εi and µi are used
when the on-line optimization problem with hard output constraints is infeasible. The weights v and h on the
variables εi and µi should be selected a few orders of magnitude above the weight on the output error, to ensure
that softening will violate constraints ( 21 ) and ( 25 ) as little as possible.

•  The parameter s can be selected freely, as long as it satisfies the inequality
( 29 ) ns >
•  The choice of the weights in the objective function of eqn. ( 18 ) is important for a balance between control and

identification.  While sensible choices can be made on the basis of engineering arguments, the issue will be
simplified with the introduction of a new MPCI variant in section 4.

•  Genceli and Nikolaou (1996) developed a successive semi-definite programming (SSDP) algorithm with
guaranteed convergence to a local optimum of the on-line optimization problem (Shouche, Genceli and
Nikolaou, 1996).  The computational complexity of SSDP is not much higher than the complexity of quadratic
programming (QP) used in standard MPC.  SDP and SSDP are briefly explained in section 5.

•  Notice that only u(k|k) among all decision variables )}1(,),({ −+ Mkkukku �  appears in inequality ( 25 ), as

shown in Figure 3.  The important implication of this observation is that PE and maximal information matrix
are trivially guaranteed for the closed loop, regardless of the behavior of the true process, as long as the on-line
optimization problem has a feasible solution with 01 >ρ .  Consequently, parameter convergence can also be
easily established.

4. Replacing output regulation by output constraints
Since MPCI relies on on-line optimization, it provides wide flexibility for formulating various constraints and
defining objectives other than the standard minimization of 2-norms.  For example, one could completely forego the
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minimization of the sum of square errors (which attempts to keep outputs at their setpoints) and simply attempt to
keep outputs within specification bounds during identification, while maximizing the lower eigenvalue of
corresponding information matrices.  The control objective may be loosened or tightened by adjusting the output
constraint bounds.  In addition, the MPCI formulation trivially guarantees, by construction, that data are going to be
as informative as possible. This flexibility allows us to develop a new mathematical formulation of realistic
engineering goals associated with the identification of a process controlled by constrained MPC.  To the best of our
knowledge, all past dual control formulations have included a regulation related term (sum of square errors), which
limits the flexibility of dual control.  Note that the PE constraints, equation ( 25 ), are not convex.  These are the
only MPCI constraints that are not convex, because of the nature of MPCI as a PE enforcing algorithm.  All other
constraints as well as the objective function may capture a very wide class of engineering requirements without
sacrificing convexity (Boyd et al., 1994).  Below we are showing two MPCI variants that capitalize on the MPCI
flexibility discussed above, by replacing output setpoint-tracking with output constraints.

MPCI variant P1
As discussed above, in this MPCI variant the process output is free to move away from its setpoint but is required to
remain within specification bounds.  The on-line optimization problem is not to minimize a quadratic objective
function involving inputs and states, but to maximize the sum of the lower bounds on the minimum eigenvalues of
information matrices over a finite horizon.  In that way, inputs to the process are allowed to excite the process highly
enough to generate as much information on process parameters as possible, while the process is outside
specifications as little as possible.  The on-line optimization problem becomes

( 30 ) ∑∑
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For MPCI variant P1 we select
( 32 ) Ms = .
Remarks
•  As seen from eqns. ( 30 ) and ( 31 ), the above MPCI variant maximizes the lower bounds on the minimum

eigenvalues of information matrices.  In this way, inputs are forced to satisfy a PE constraint, in order to
generate as much parameter information as possible.

•  The choice Ms = , eqn. ( 32 ), corresponds to a forgetting factor that is identically zero for data older than M
time steps.

•  The engineering objective of keeping the output y closed to its setpoint is expressed by the output constraint in
equation ( 21 ).

•  Since a poor model is used to predict future values of the output y, at least in the initial stages of identification,
care must be taken to express the output constraints conservatively enough, to compensate for inaccuracies in
the prediction of y.  A simple approach to this issue is to tighten the upper and lower bounds on y, ymax and ymin,
respectively.  A more sophisticated approach, relying on chance-constraint formulation of output constraints is
presented in Schwarm et al. (1998).

•  In place of equation ( 24 ), one can easily use the recursive least squares (RLS) algorithm.  P(0), the covariance

of )0(θ̂ , and is usually chosen sufficiently large since at the beginning of identification.  Parameter
convergence using the recursive least squares algorithm is guaranteed if the following condition is satisfied:

( 33 ) ∞=
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MPCI variant P2
The difference between this MPCI variant and P1 is that instead of requiring PE in a moving horizon with fixed
window length, as in eqn. ( 31 ), we enforce PE over a series of windows of increasing length, as follows:
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( 34 ) Ii
ik

j

Tj kijkkijk ρ+−φ+−φλ∑
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The common starting point of the PE horizons (Figure 3) is at the beginning of identification.
Remarks

•  Notice that the upper limit of the summation in eqn. ( 34 ) is k – 1 + i.  This increases the identification
horizon length at each time step k, as is standard in recursive least squares (RLS),

•  Since this variant retains the old data and keeps adding more new data, it has to be used in cases where
parameters do not change during identification. In that case there is valuable information in all past data.  In
contrast, variant P1 must be used in cases where parameters change with time, and distant past information
has to be discarded.

•  If eqn. ( 24 ) is replaced by recursive least squares (RLS), then it is straightforward to show that the PE
constraint in variant P2, eqn. ( 34 ), purports to generate data that do not result in singularities in RLS.

•  Both sides of eqn. ( 34 ) can be multiplied by 1/k, to prevent excessively large numbers for large k.

5. Numerical solution of the MPCI on-line optimization problem
 The inclusion of PE constraints in the MPCI on-line optimization generates a non-convex problem, because the PE
constraints are non-convex quadratic matrix inequalities (QMI).  While the global optimum of this problem may be
hard to find, a local optimum can be easily found.  Genceli and Nikolaou (1996) developed an algorithm that
successively employs semidefinite programming (SDP), to converge to a local optimum.  Shouche et al. (1996)
showed that convergence of the successive SDP (SSDP) of Genceli and Nikolaou (1996) is guaranteed.  We give a
brief overview of that algorithm below, and illustrate how it can be applied to the MPCI variants of this work.

Approximation of QMI by LMI
To circumvent the nonconvexity problem resulting from the PE constraints, we take advantage of the following
inequality (Genceli and Nikolaou, 1996)
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( 37 ) TkMkukkukkuk )]1()1()([)( −++= �U

and the upper limit, r, of the summation in eqn. ( 35 ) is equal to 1−M  in eqn. ( 31 ), and 1−+ ik  in eqn. ( 34 ), for

the MPCI variants P1, and P2, respectively.  The vectors 1+∗ ℜ∈ nφ in equation ( 36 ) can be thought of as points of
linearization (Genceli and Nikolaou, 1996).

Therefore, by virtue of equations. ( 35 ), the QMI in eqns. ( 31 ) or ( 34 ) are satisfied if the inequalities
( 38 ) MikL ii ,...2,1))(( =ρ IU �
are satisfied.  The inequalities in equation ( 38 ) can be easily shown to be linear matrix inequalities (LMI), i.e., they
have the general form
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where qℜ∈z  is a variable, and the symmetric matrices Gi = Gi
T  NxNℜ∈ , i=0,…, q, are given.  It can be further

shown (Genceli and Nikolaou ,1996) that the M LMI in equation ( 38 ) can be written as a single LMI of the form
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 Details can be found in Genceli and Nikolaou (1996).
 Therefore, one can find a sub-optimal solution of problems P1 or P2, if one solves an optimization problem
of the following form:

 ( 41 ) 
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 and the inequality of eqn. ( 42 ) captures all MPCI inequality constraints excluding the PE constraints.  The above
optimization problem in equations
( 41 ) to ( 43 ) can finally be reformulated as the following SDP problem:

MPCI On-line SDP Problem
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where [ ]PM += 2aaaA 21 ( , ia  is a column vector;  )(vDiag  is a diagonal matrix with diagonal elements

equal to the entries of the vector v;  PM
T

PMMM
ththth

+

+
ℜ∈



 −−= 2

)2(2
111100 )))c ;  PM +ℜ∈ 2x ;

Fi, Mi 2,,0 *= , are defined in equation. ( 40 );  and 0F =i , PMMi ++= 2,,12 + .

Semidefinite programming (SDP)
Optimization problems involving minimization of a linear function subject to an LMI are called Semidefinite
Programming (SDP) problems (Vandenberghe and Boyd, 1994).  These are convex optimization problems of the
form

( 47 ) zc
z

Tmin

subject to

( 48 ) 0
1

0 ,∑+
=

q

i
izi GG

The solution of SDP problems can be obtained by powerful algorithms like interior point methods.  In our
simulations, solutions are obtained by a Merhotra-type primal-dual predictor-corrector interior-point algorithm for
semidefinite programming.(Alizadeh et al.,1997).

It should be noted that, by its structure, the SDP problem corresponding to MPCI is guaranteed to have a
feasible solution.

Successive SDP
To obtain the SDP problem of equations ( 45 ) and ( 46 ) at a given time step k, the PE constraints, eqns. ( 31 ) or (

34 ), were substituted by LMI after linearization around the vectors 1+∗ ℜ∈ nφ .  If ∗φ are poorly chosen, then the
solution of the on-line SDP problem may be far from the original MPCI nonconvex problem (variants P1 and P2).
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To improve the solution of the MPCI on-line problem, one can iteratively refine the vectors ∗φ  and successively

solve each corresponding SDP problem.  Refined ∗φ  contain values of u that are optimal for the SDP problem of the

previous iteration corresponding to the previous vector ∗φ  (Genceli and Nikolaou, 1996).  It should be noted that
the solution of each successive SDP problem is a feasible solution of the original problem.  We summarize the
SSDP procedure below.

Successive SDP for  the solution of the MPCI on-line problem
Step 1. Compute the matrices }221{ PM...,,ii +=G  in equation ( 46 )

Step 2. Select

}{ 1,,1P3for1,P2for1P1,variantfor1,0),|(* −=−+−+−=+−φ MiikiMMjkijk --
A good choice is:

( 49 ) [ ]11)|(*
nkijk Tαα=+−φ .

where

( 50 )
î



−<+−−−+−
≥+−−+−

=α
),1(1)1|(

)(1)(

dimplementenotbutkatsolutionSDPlijifklijku

upastlijiflijku

SDP
l

Step 3. Solve the SDP problem, equations ( 45 ) and ( 46 ).  Let the optimal solution be x
( 51 ) { }PMMkuspkkusp µµρρ /// 11)1(),|( −+

Step 4.   Update ∗φ  as follows:

( 52 ) [ ]11)|(* δδφ n
Tkijknew 0=+−

where:

( 53 )
î



<+−−+−
≥+−−+−

=
)(1)|(

)(1)(

katsolutionlijifklijku

upastlijiflijku

SDP
lδ

Step 5.   If ( ) 1new
T

old
T ≥− xcxc  and 2κφφ ≥− ∗∗

newold then xx newold =  and  newold
∗∗ =φφ go to Step 3.  Else

go to Step 6.
Step 6.   Implement the first input move u k k( | )  to the process.
Step 7.   Identify the process parameter using equation ( 24 ) or RLS.
Step 8.   Update the output prediction using equation ( 23 ).
Step 9.   Let k k← +1  and go to Step 1.

6. Illustrative examples

Example 3
Let the real behavior of a linear process be described by the equation
( 54 ) )()()4(1.0)3(2.0)2(5.0)1()( kwkdkukukukuky ++−+−+−+−=
where d is a deterministic disturbance and w is white noise with zero mean and standard deviation equal to 0.01.
The process input u must satisfy the constraints
( 55 ) 1.0)(4.0 ≤≤− ku

at all times k.  Assume that the linear model
( 56 ) )|()|4(11.0)|3(22.0)|2(55.0)|1(1.1)|( kikdkikukikukikukikukiky ++−++−++−++−+=+
is available for the above process from previous data.

The process experiences a step setpoint change
( 57 ) ysp = – 0.3
at time k=0.  After this set point change, we want the output y to be constrained as
( 58 ) 25.0)(4.0 −≤≤− ky

to meet specifications.  The process also experiences the following upsets:
Period 1  ( 250 ≤≤ k )  The system is upset by the step disturbance
( 59 ) d(k) = 0.1
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starting at time k = 0;
Period 2  ( 10026 ≤≤ k ) At time k=26 the real process has changed as follows
( 60 ) )()()4(05.0)3(1.0)2(2.0)1(3.0)( kwkdkukukukuky ++−+−−−−−−=
The system is upset by the step disturbance
( 61 ) d(k) = – 0.4

We use the following four control schemes to control the above process:
A. MPC,
B. MPC with adaptation,
C. MPC with adaptation and external dithering ,and
D. MPCI variant P1,

Controller parameter values are shown in Table 1.

Table 1 – Values of controller  parameters for Example 3

Parameter Symbol Value for  MPC, Case C Value for  MPCI, Case D

Control horizon length M 8 8

Optimization Horizon Length P 12 12
Move suppression term weight r i 0.1 Not applied

Output error term weight wi, i=1,…..M+n 1 Not applied
Forgetting Factor λ 1 1

Weight of constraint softening
variable, ε h Not applied 100

Standard deviation of dithering  signal 0.25 Not applied

Case A: MPC
Conventional MPC resulted in saturation of the process input and never recovered as illustrated in Figure 4.

Case B: MPC with Adaptation
Adaptation was added to the MPC scheme.  Adaptation began at k=5 after sufficient data were collected.  Process
inputs reached saturation, thus resulting in a badly conditioned information matrix.  Thus parameters could not be
identified properly.  This scheme did not recover as well (Figure 5, Figure 6).

Case C: MPC with Adaptation and Dithering on the Process Input
The process input was dithered through addition of a normally distributed signal with zero mean and standard
deviation of 0.25.  The intention was that dithering would result in PE on process inputs.  Although this scheme did
better than MPC with adaptation, parameters did not converge to real process coefficients.  In addition, the process
output y did not stay within the specified bounds (eqn. ( 58 )) most of the time.(Figure 7, Figure 8).

Case D: MPCI
After standard MPC was implemented for the first 25 time steps, MPCI was turned on at the 26th time step, when the
process changed.  The process output y stayed within the specified bounds (eqn. ( 58 )).  Adaptation began at k=32.
MPCI correctly identified the new process parameters and disturbance after sufficient data were collected, i.e. when
k>32 (Figure 9, Figure 10).

Example 4
Consider again that the real behavior of a linear process is described by an equation similar to ( 54 ), with the noise
variable w(t) being colored as
( 62 ) )1(8.0)()( −+= kekekw

where e is white noise with standard deviation 01.0=eσ  and 1.0=eσ .  Table 2 shows estimates at the final point
of the simulations.  As expected, estimates are somewhat biased.  The effect of colored noise on MPCI and possible
modifications need to be further investigated.
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Table 2

Parameter Parameter estimate for 01.0=eσ Parameter estimate for 1.0=eσ

d̂   ( 4.0−=d ) -0.3992 -0.3929

1b̂   ( 3.01 −=b ) -0.2966 -0.1900

2b̂   ( 2.01 −=b ) -0.1950 -0.2319

3b̂   ( 1.01 −=b ) -0.1005 -0.1325

4b̂   ( 05.01 =b ) 0.0481 -0.0373

Example 5
Consider the linear process
( 63 ) )()()3(04.0)2(2.0)1()( kwkdkukukuky ++−+−+−=
where d is a deterministic disturbance and w is white noise with zero mean.  The process input must satisfy the
constraints
( 64 ) 1)(1 ≤≤− ku

( 65 ) 5.0)(5.0 ≤≤− ky

at all times k.  Note that the bounds on the output y are tighter than the actual specification bounds, to account for
model uncertainty during identification.  Assume that the linear model
( 66 ) )|()|2(1.0)|1(2)|( kikdkikukikukiky ++−++−+=+
is available for the above process from prior information.  The process is disturbed by white noise w with zero mean
and 1.0=wσ , and by a step disturbance of magnitude 1.5, entering the system at time k = 30.  MPCI (variant P2) is
compared to the following adaptive MPC scheme:

( 67 ) ( ) 



 µ++−+ ∑∑

=

−

=

P

i
i

P

i
sp

u
hikukiku

1

2
1

0

2)()|( minimize

subject to
( 68 ) Piykikyy ii 11)|( maxmin =+≤+≤− µµ
( 69 ) 10)( maxmin −=≤+≤ Piukikuu 2
and eqns. ( 24 ) and ( 25 ) corresponding to MPCI variant P2;  where spu  is a predetermined persistently exciting

input sequence;  and h is the weighting factor on the output constraint softening variable.  The first term in eqn. ( 67
) purports to force the process input u to be persistently exciting.  The second term is used only when the on-line
optimization is infeasible with 0=h .  Note that the only differences between the MPCI and adaptive MPC schemes
of this example are (a) the objective functions, eqn. ( 30 ) vs. eqn. ( 67 ), and (b) the presence of PE constraints in
MPCI.  Note, also, that both schemes require the output y not to track a setpoint, but merely to stay within
specification bounds.  Values for controller parameters are given in Table 3

Table 3 – Values of controller  parameters for Example 5

Parameter Symbol Value for  Adaptive MPC Value for  MPCI
Control horizon length M 5 5

Optimization Horizon Length P 5 5
Forgetting Factor λ 1 1

Weight of constraint softening variables, ε, µ h 1000 100
For both control schemes, the process is under MPC until k = 25, and under the above adaptive MPC until k

= 29.  The reason for not switching on MPCI immediately is discussed in Genceli and Nikolaou (1996).  At time
30=k  a step disturbance of magnitude 0.2 enters the system.

Figure 11 compares estimates of the parameter covariance matrices corresponding to MPCI and MPC.  The
clear superiority of MPCI is evident.  What is even more important is that although both controllers force the
process output beyond its bounds (as expected, because of uncertainty in future output predictions due to model
inaccuracies) MPCI produces a lower sum of squares of output constraint violation errors than the specific adaptive
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MPC.  The reason is that MPCI selects inputs that maximize information in the presence of an external step
disturbance, while attempting to keep process output within bounds.  Adaptive MPC, on the other hand, attempts to
reconcile disturbance rejection and identification in a way that is not optimal, because it forces the process input to
follow a signal that would be persistently exciting, hence optimal, in the absence of disturbance.

7. Conclusions
In this work we discussed the basic philosophy behind MPCI and proposed a new MPCI variant.  In the proposed
new variant, process outputs are free to move away from setpoints, as long as they remain within specification
bounds.  Process inputs, on the other hand, are constrained to excite the process as much as possible, for the
generation of maximum parameter information, while process outputs violate specification bounds as little as
possible.  By its construction, the proposed algorithm reduces the analysis of closed-loop PE enforcement to a
feasibility problem.  Advantages of the proposed variant include

•  Easier controller design, through simplification of the on-line objective.
•  Reduced computational load for the on-line optimization, by rendering the objective linear (Boyd et al.,

1994).
•  Better satisfaction of realistic closed-loop identification goals, through replacement of setpoint tracking by

output constraints.
The merits of the proposed approach were illustrated through two simulation examples, in which the superiority of
MPCI over various versions of adaptive MPC (essentially the only alternative for constrained control) was
demonstrated.

While the basis philosophy of MPCI is simple, namely inclusion of PE constraints in on-line optimization,
there are many facets of it that need to be studied, along the lines of the rich literature on system identification.
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Figure 1.  Parameter  convergence for eqn. ( 10 ), 2.0=a , 1=b , 1=K , 3=m .
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Figure 2.  Parameter  convergence for eqn. ( 15 ), 2.0=a , 1=b , 1=K , 2=m .
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Figure 3.  MPCI moving hor izon
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Figure 4.  Process output and input for  closed loop with MPC, Example 3
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Figure 5.  Process output and input for  closed loop with adaptive MPC, Example 3
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Figure 6.  Process model parameters and disturbance estimates for  closed loop with adaptive MPC, Example
3 (dashed lines are real values, continuous line are estimates)
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Figure 7.  Process output and input for  closed loop with adaptive MPC and external dither ing, Example 3
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Figure 8.  Process model parameters and disturbance estimates for  closed loop with adaptive MPC and
dithering, Example 3 (dashed lines are real values, continuous line are estimates)
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Figure 9.  Process output and input for  closed loop with MPCI variant P1, Example 3
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Figure 10.  Process model parameters and disturbance estimates for  closed loop with MPCI, Example 3
(dashed lines are real values, continuous line are estimates)
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Figure 11.  Compar ison of the size of parameter  covar iance estimates for  adaptive MPC (solid line) and
MPCI (dashed line) for  Example 5
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Figure 12.  Process output and input for  the closed loop with adaptive MPC, Example 5
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Figure 13.  Parameter convergence for  closed-loop identification with adaptive MPC, Example 5
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Figure 14.  Process output and input for  the closed loop with MPCI, Example 5
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Figure 15.  Parameter convergence for  closed-loop identification with MPCI, Example 5


