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ABSTRACT

The effect of fluid flow, transport, and reaction on the shape evolution of two-dimensional cavities during wet chemi-
cal etching was studied. Finite element methods were employed to solve for the fluid velocity profiles and for the etchant
concentration distribution in cavities of arbitrary shape. A moving boundary scheme was developed to track the shape
evolution of the etching cavity. In the case of pure diffusion and under mass-transfer control, a mask with finite thickness
resulted in significantly better etch factor (etch anisotropy) as compared to an infinitely thin mask, albeit the etch rate was
essentially unaffected. With fluid flow past the cavity, the etch rate increased fourfold and the etch factor increased by 40%
as compared to pure diffusion, under the conditions examined. In addition, the etch rate, etch factor, and cavity wall pro-
files showed a strong dependence on etch time as the cavity aspect ratio (depth/width) increased with time during etching.

In the modern microelectronics industry, intricate pat-
terns are etched through resist masks into thin films of
semiconductors, insulators, and metals. For example,
etching patterns of controlled shape and with smooth sur-
faces into films of GaAs are important in the fabrication of
optoelectronic devices; and etching of Cu vias is common
in printed circuit board fabrication. Wet chemical methods
are widely employed for etching thin and thick films
(~1-100 pm). Such methods are characterized by excellent
selectivity and relatively high etch rate (1, 2). Wet chemical
etching is highly anisotropic when dominated by crystallo-
graphic effects; extremely high aspect ratios (40:1) in sub-
micron structures have been obtained (3). In the absence
of crystallographic effects significant mask undercut may
result. However, by judicious selection of hydrodynamic
conditions (4, 5) or by using photon-assisted techniques
(6), mask undercut may be minimized or eliminated.

During etching some means of solution “agitation” is
frequently provided, for example by directing etching
fluid jets towards the surface of the workpiece. When etch-
ing is controlled by surface reaction kinetics, the shape of
the resulting cavity may be predicted by geometric consid-
erations alone, if the surface reaction rate is known for the
- different crystallographic orientations. However, when
etching is controlled by mass transfer to or from the etch-
ing surface (e.g., when the surface reaction is very fast), the
resulting cavity shape depends in a complex manner on
the local fluid velocity profiles and on the concentration
distribution of the reactants and/or products. Under such
conditions, prediction of the shape evolution and of the
final cavity wall profile is far more difficult. Mathematical
models based on fundamental principles of transport and
reaction phenomena may then be useful in identifying the
process operating conditions which result in high etch rate
with minimum mask undercut.

Vuik and Cuvelier (7) studied the shape evolution of two-
dimensional etching cavities in a quiescent solution (pure
diffusion with no fluid flow). The effect of surface reaction
rate as compared to the diffusion rate was examined. In a
series of papers, Kuiken (8-10) used asymptotic methods to
derive semianalytical solutions of etching profiles in quies-
cent solutions and under mass-transfer control (infinitely
fast surface reaction). A characteristic bulging of the pro-
file was observed close to the mask edge (the mask was as-
sumed to be infinitely thin). It was further shown that a
similar bulging occurs even when hydrodynamic flow is
imposed past the cavity. Alkire et al. (11) and Alkire and
Deligianni (5) studied the effectiveness of fluid flow in rins-
ing the reaction products from cavities of invariant shape
and of different aspect ratios. :

Although the effect of fluid flow has been recognized as
being important, and despite the interest in studying the
shape evolution of etching cavities under fluid flow condi-
tions, there appears to be no published work on the shape
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evolution under the combined effects of fluid flow and
mass transfer.

In addition to etching through masks, shape evolution
phenomena are encountered in a variety of situations such
as deposition through masks (12} and pitting corrosion
(11). It is therefore worthwhile to develop general mathe-
matical methods capable of tracking the shape evolution
of cavities under diverse operating conditions.

In the present work a mathematical model is presented
to study the effect of fluid flow, transport, and reaction on
the shape evolution of two-dimensional cavities during
wet chemical etching. Finite element methods were em-
ployed to solve for the fluid velocity profiles and for the
concentration distribution of the etchant species in the
cavity region. A moving boundary scheme was developed
to track the shape evolution of the cavity during etching.
The effects of fluid velocity, speed of surface reaction, and
cavity aspect ratio on etch rate and etch anisotropy were
studied.

Model Formulation

A schematic of the system studied is shown in Fig. 1. A
solid film partially protected by an inert mask is placed in
a solution which flows past the exposed film. At time zero,
when the position of the film surface is at I'¢(0), the solu-
tion entering the cavity region through the left is assumed
to contain an etchant species, which is capable of reacting
with the film but is inert against the etching mask. The
etchant species are transported by convection and diffu-
sion to the film surface where they react thereby etching
the film. As film etching proceeds, the cavity shape evolves
with time according to the etch rate distribution along the
cavity walls. The deformation of the cavity affects the local
fluid flow and etchant concentration distributions which
in turn affect the further shape evolution of the cavity. In
Fig. 1, the moving etching surface T¢(t) is shown at some
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Fig. 1. Schematic of the etching system studied
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time t partway during etching. Because the etching solu-
tion is capable of etching in all directions, a characteristic
mask undercut develops. The goal of the etching process is
to minimize or totally eliminate the mask undercut while
maintaining a high etch rate. A practical etching example
may be that of etching GaAs using Br; or H;O, solution
(13), or that of etching Cu in an HCI solution.

Because of the microscopic dimensions of the cavity
some simplifications can be made regarding the flow field.
First, the relevant Reynolds number (see Eq. [15] for defi-
nition) is less than unity. Therefore, Stokes flow (or creep-
ing flow) may be assumed to prevail in the cavity region.
Second, the velocity profile close to the wall (mask) in re-
gions far away from the cavity mouth may be assumed to
be linear with a zero velocity at the wall. The additional as-
sumptions outlined as follows simplify the mathematical
analysis of the problem although the salient features'of the
process are preserved: (i) incompressible flow of a Newto-
nian fluid; (ii) isothermal system with constant physical
properties; (iii) only one species in the solution is impor-
tant in the etching reaction which follows linear Kinetics;
(iv) two-dimensional cavity, i.e., the size of the cavity in the
direction normal to the paper is large compared to the
other dimensions of the cavity; (v) the surface is isotropic,
i.e., the etching rate constant is independent of position
along the surface.

The problem is then to find the time dependent shape of
the boundary I's(t). At any time during etching, the further
evolution of the boundary depends on the etch rate distri-
bution along the surface I'¢(t). This in turn depends on the
concentration distribution in the vicinity of the moving
boundary. The following equations and boundary condi-
tions were used in order to compute the velocity and con-
centration fields.

The flow field was obtained by solving the Stokes
equation

m
p—gt— = —Vp + Vplu in Q) [1]

along with the continuity equation
V.-m=0 in Q@) (2]

Here (1) is the time dependent domain bounded by sur-
face I, i = 1,...,6 as shown in Fig. 1. Surfaces I'}, I';, and I3
are fixed in time, but surfaces Iy, I's, and Iy evolve with
time. The relevant boundary conditions are

U,

=0 u,=0on Iand I, [3]
ax
u, = const u, =0 on I [41
Uy =0 u, =0 on [yt), I's(t), and T'e(t) [5]

Boundary conditions Eq. [3] and [4] imply that a shear flow
prevails far to the left and far to the right of the cavity.
Boundary condition Eq. [5] is the no slip condition along
solid walls. The initial condition was u = u,, where u, is the
velocity field at time ¢ = 0 {i.e., when TI'q is at position I's(0)].

The flow field found by solving Eq.[1] and [2] with the as-
sociated boundary conditions Eqg. [3]}-{5] was then used in
the convective diffusion Eqg. [6] below to find the two-
dimensional concentration distribution of the etchant spe-
cies in the cavity region

ac .
— +1u-Ve=DV% in Q1) [6].

at

with boundary conditions

c=c¢, on-I; (7]
Ve-n=0 on Iy, Ty, ['yt), and Tx(t) (8]
DVe-n = —kec on T'et) (9]

The initial condition was c¢(t =0) =0 everywhere in
O(t = 0). Here c is the concentration of the etching species,
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k is the etching (surface) reaction rate constant, and n is
the unit normal vector pointing outwards the computa-
tional domain.

Equation [8] implies that the mask is unreactive, and Eq.
[9] implies a first-order chemical reaction at the moving
boundary. The movement of the boundary was described
by

U, = —ave-n [10]

where v, is the velocity of the moving boundary I'¢(t) in the
direction of the outward normal and o is given by

DM,

mps

f11]

o=

where M; is the molecular weight of the solid, p; is the solid
density, and m is a stoichiometric coefficient in the etching
reaction as shown in Eq. [12]

S + mE—qP (12]

where m moles of etchant E are consumed per mole of
solid S reacting. The initial condition for Eq. [10] was that
the boundary at t = 0 was I'(0) as shown in Fig. 1.

The governing equations, boundary, and initial condi-
tions were nondimensionalized by introducing

X=2/L Y=y/L U=uolu, [13]

C = c¢lc, 7= tu/L P = pllpud) [14]
Re = u.L/v Pe = u.LL/ID [15]

® = kL/D B = u.Lf{ac,) V, = va/u. [16]

Here L is the half-width of the cavity mouth, and u. is the
magnitude of the flow velocity at the center of the cavity
mouth (at x = y = 0). This velocity may be related to the
shear stress at the wall (mask) far from the cavity mouth.
For given etching equipment geometry and operating con-
ditions, the wall shear stress may in turn be related to more
accessible quantities such as the solution flow rate.
The dimensionless form of Eq. [1]{5] is

aUu 1
— = —-VP +—V?U in Q1) [17]
T Re
V-U=0 in Q) [18]
U,
=0 U,=0 on I''and I's [19]
Jx
U,=const. U;=0 on I [20]
U, =0 U, =0 on [y, I'sn), Fe(n) [21]
U=Upatt=0 [22]

The dimensionless convective-diffusion equation and the
associated boundary conditions read

oC 1 .
— +U-VC=—V%C in Q(7) [23]
oT Pe
C=1onT,; [24]
VC-n =0 on Iy, I's, [y(7), and I's(7) [25]
VC -n=—-®C on Igr) [26]

The initial condition was

C=0atr=0 in Q) [271

Finally, the dimensionless form of Eq.[10]is Eq. [28] below
VC-n= -V, [28]

Parameter ¢ (Eq. [16] and [26]), the so called Thiele mod-
ulus, shows the relative importance of diffusion as com-
pared to reaction. When ® >> 1, surface reaction is infi-
nitely fast compared to diffusion (mass-transfer controlled
case). The opposite extreme is that of & << 1 implying a
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very sluggish reaction (reaction controlled case). In the lat-
ter case the concentration of the etchant species is essen-
tially equal to ¢, throughout the cavity region. The reaction
rate is then expected to be uniform along the etching sur-
face (equal to kc,), except when crystallographic etching
plays arole, i.e., when the value of k depends on the orien-
tation of the surface for a crystalline solid. The Peclet num-
ber, Pe, shows the relative importance of mass transport
by convection as compared to diffusion. When Pe >> 1,
convection is the dominant mode of mass transfer.

The case of pure diffusion (no fluid flow) was examined
as well. In such case the governing equation and boundary
and initial conditions are, in dimensionless form

aC
— =V%C in Q(T) [29]

aT
C=1o0onT,,Tyand I}, [30]
VC-n=0 on I'(D),I's(T [31]
VC -n= —®C on I'(T) [32]
VC-n=-BV,* on [(T) [33]
C=1 in Q0) [34]

where
T = tD/L? Vu* = v,L/D, and B = Di(oc,) [35]
One notes that ‘
B =PeB V,* = PeV, and 7= PeT [36]

In addition, taking into account Eq. [36], one observes that
Eq. [33] describing the movement of the boundary in the
case of pure diffusion, is identical to Eq. [28] describing the
movement of the boundary in the case of fluid flow.

Parameter B (and B) is a measure of the speed of the
boundary movement. When B >> 1(B >> 1), the boundary
moves only very slowly. The diffusion process (or convec-
tive-diffusion for the case of B) is then rapid, and the con-
centration profiles can quickly relax to their steady-state
value corresponding to the instantaneous position of the
moving boundary. This is the so-called quasi-steady-state
approximation. As an example, when etching GaAs in a
HCI1-H,0,-H,0 solution in which the etchant (H,0,) con-
centration is 1M, the value of B = 110. One observes that
the quasi-steady-state approximation may be good for
practical etching systems (10, 13).

Method of Solution

The finite element method was chosen for the present
problem since the method is well suited for domains of ir-
regular shape. The computational domain and the finite el-
ement grid used are shown in Fig. 2. For the case of fluid
flow, the position of boundary I'} was chosen at X = -5,
that of I'; was set at Y = 5, and the position of I'; was set at
X = 5. The position of the moving boundary I's in this par-
ticular case corresponds to the profile shown in Fig. 5a for
T = 34.7. Boundaries Ty, I's, and I'y evolve with time but
boundaries I';, I'y, and I'; are stationary. Numerical experi-

(-5,4) (5,4)

g %
(-5,0) MASK (-1,0) 1,0) MASK (5,0

Fig. 2. Computational domain and finite element grid. The position
of the moving boundary shown here corresponds to time T = 34.7 of
Fig. 5a.
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ments showed that by positioning boundaries I';, I';, and
I's further away from the cavity (compared to their posi-
tion shown in Fig. 2) did not affect the results, for the range
of parameter values used. Further numerical experiments
were conducted to study the effect of the number of ele-
ments used. The element mesh was made denser around
the mouth of the cavity and within the cavity where
steeper concentration gradients are expected. In addition,
enough elements were needed to ensure success of the
moving boundary scheme to be described below. The total
number of elements increased with time owing to element
addition to accommodate the expanding boundary I'¢(t).
For the case shown in Fig. 2, 1120 bilinear quadrilateral el-
ements (and 1204 nodes) were used. Refining the mesh
even further had no significant effect on the results, for the
parameter range studied.

The solution to the moving boundary problem was ob-
tained in a stepwise manner. Consider a time ™ during
etching, for which the position of the moving boundary
X;", the velocity field U®, and the etchant concentration
field C" are known. Here the superseript n denotes the nth
time step and 1° = 0. X;" is the position vector of the jth
node on the moving boundary I'e(+"). Then quantities X",
U1, and C**! were obtained through the following pro-
cedures.

1. For the time interval At = 1" — %(n =0, 1,...), the
etching surface was regarded as fixed. For this fixed
boundary domain, Eq. [17],[18], and [23] along with the as-
sociated boundary conditions were solved by an implicit
predictor-corrector scheme [14] to obtain U**! and C»*1,

2. The normal unit vector n* at point X;* was-found by
the method described in Glowinski [p. 416 of Ref. (17)].

3. The value of the etchant flux along the reactive surface
VC - n was obtained as described in Glowinski [p. 398 of
Ref. (17)].

4. The new position of the boundary X;**! was then eval-
uated using Eq. [37] below

X = X + A Vo [37]

where V, was found from Eq. [28] and the already calcu-
lated value of the flux VC - n. A procedure identical to the
one described above (substeps [1}[4]) was then employed to
locate the position of the moving boundary at the next
time step 7*% The shape evolution of the etching cavity
was thus followed. Since the computational domain Q(r)
was expanding with time, new elements were added to the
mesh inside the cavity in order to maintain a fine spatial
discretization.

The finite element method and the penalty function for-
mulation were used to obtain the velocity field. The
Streamline Upwind/Petrov Galerkin (SU/PG) finite ele-
ment method was used to solve for the etchant concentra-
tion field. The SU/PG method is well suited for convec-
tion-dominated problems (high Peclet numbers), such as
the problem at hand. In this method, diffusion is added
which, however, acts only in the flow direction. Hence, the
robust qualities of the classical upwind finite element
methods (e.g., upwind Galerkin finite elements) are main-
tained but the new method is not subject to the “artificial
diffusion” criticisms associated with the classical meth-
ods. More information about the SU/PG method may be
found in Ref. (15) and (16).

Equation [37] is an explicit time integration scheme for
the moving boundary. An implicit scheme could also be
used of the predictor-corrector type [see also Ref. (18)].
However, the computational costs would be much higher.
The explicit time integration scheme was then used with
time step small enough to ensure convergence and stabil-
ity. Typically 100-150 time steps were used in order to com-
pute the shape evolution of a cavity (such as shown in Fig.
5a and 8a). The magnitude of the time step was determined
adaptively.-Smaller time steps were used initially when
the etch rate was higher. Calculations were performed on a
dedicated VAX station II/RC computer. A complete shape
evolution calculation under fluid flow conditions required
12-24h of CPU time depending on the conditions used.

When solving the problem of pure diffusion, the position
of boundary I'; was chosen at X = —7.5, that of I'; was set
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Fig. 3. (a, left) Comparison of the finite element solution (—e—) with an asymptotic solution (
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) presented in Ref. (8). Quiescent solution {no

fluid flow), and infinitely thin mask. Other conditions were, ® — %, and B = 100. (b, right) Reactant flux (instantaneous etch rate) distribution
along the reactive surface at different times during etching. Conditions were as in Fig. 3a.

at Y = 6.5 and the position of I'; was set at X = 7.5. A larger
domain size was used for pure diffusion as compared to
forced convection because in the former case the concen-
tration boundary layer expanded with time. When con-
sidering long etching times, an alternative is to use an
asymptotic expression for the concentration far from the
cavity (7). This will perhaps reduce the computational
costs. Typically, 100 time steps were used for a complete
shape evolution calculation (such as shown in Fig. 4). For
pure diffusion the computation time was 3-5h of CPU on
the VAX station II/RC computer.

Results and Discussion

In order to fest the numerical code used to solve the
moving boundary problem, numerical results were com-
pared with an asymptotic solution obtained by Kuiken (8).
The author examined the simplified case of etching
through a slit under conditions of pure diffusion (no fluid
flow), infinitely fast reaction (® — ), and infinitely thin
mask. The comparison is shown in Fig. 3a where, owing to
symmetry, only half of the cavity is shown. The solid lines
without points are from Kuiken’s asymptotic solution
which is valid for long times (T >> 1) and small vertical
displacements of the surface (Y]|<<1, where [Y| is
the absolute value of Y). The numerical results of the pre-
sent work, shown by the solid lines with points, are in
good agreement with the asymptotic solution.

The etch profiles in Fig. 3a reveal a characteristic
bulging near the mask edge. This is because of higher etch
rate there due to reactant diffusion from the areas above
the inert mask. The bulging becomes less pronounced as
the cavity deepens and the reactant diffusion path in-
creases. The etch factor (EF), defined here as the etched
depth at the center of the cavity mouth divided by the
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mask undercut, is a measure of the etch anisotropy
achieved. The higher the etch factor, the better the anisot-
ropy. For perfect anisotropic etching (no mask undercut),
the etch factor tends to infinity. The etch factor in Fig. 3a is
less than unity at the early times (e.g., EF = 0.66 at T = 10),
but exceeds unity at later times (see also Fig. 10). Figure 3b
shows the reactant flux distribution (i.e., the instantaneous
etch rate distribution) along the reactive surface for a cav-
ity etching under the conditions of Fig. 3a. X is the x-coor-
dinate of a point along the reactive boundary. The right-
most point of each curve corresponds to the point where
the boundary meets the mask (undercut region). Early dur-
ing etching (T = 6), the flux is much higher close to the
mask edge (mask edge corresponds to X = 1) as compared
to the cavity center (X = 0). This results in the characteris-
tic bulging of the wall profiles. At later times, the flux dis-
tribution is less nonuniform. At very long times the etch
rate will be uniform along the etching surface. The value of
the flux decreases monotonically with time because the
diffusion layer thickness increases with time.

Figure 4a shows the shape evolution of a cavity under
conditions identical to those of Fig. 3 except that the mask
thickness was 25% of the cavity mouth width (h/2L = 0.25).
As in Fig. 3, only half of the cavity is shown. Compared to
Fig. 3a, the bulging effect is much less pronounced, even at
the initial stages of etching. This is due to the larger diffu-
sion length of the reactant from the area above the inert
mask to the etching surface. Etch anisotropy (etch factor)
is enhanced using a finite thickness mask (see also Fig. 10),
and etch rate is only slightly affected. The corresponding
flux distribution along the etching surface is shown in Fig.
4b. Compared to Fig. 3b, the maximum in the flux at early
times is much reduced. This explains the relatively weak
bulging of the cavity wall profiles even at the initial stages
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Fig. 4. (a, left) Shape evolution of a cavity in a quiescent solution. Conditions were the same as in Fig. 3a except that the mask thickness was 1/4
of the cavity mouthwidth. (b, right) Reactant flux (instantaneous etch rate) distribution along the reactive surface at different times during etching.

Conditions were as in Fig. 4a.
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Fig. 5. (q, left) Shape evolution of a cavity under fluid flow conditions. Other conditions were Pe = 100, Re = 0.1, B = 100, and ® — . Cavity
wall profiles are shown for dimensionless times T = 0, 1.9, 4.0, 7.3, 12.3, 18.8, 26.9, 34.7, 45.6, 56.7, 68.6, 81.5, and 95.8. Mask thickness was
1/4 of the cavity mouthwidth. (b, right) Reactant flux (instantaneous etch rate) distribution along the reactive surface at different times during etch-

ing. Conditions were as in Fig. S5a.

of etching. As before, flux (instantaneous etch rate) be-
comes less nonuniform and decreases monotonically with
time.

The effect of fluid flow on the shape evolution of a cavity
is depicted in Fig. 5a. Conditions were otherwise the same
as in Fig. 4a except that Pe = 100 and Re = 0.1. For this
case the dimensionless wall shear stress was
T.Lipu) = 6.23, where 1, is the wall shear stress far for the
cavity mouth. The etch profiles are now asymmetric owing
to fluid flow past the cavity (the fluid enters from the left).
The time scale in Fig. 5 is expressed in terms of T (instead
of in terms of 1), so that the etch rates obtained from Fig. 4a
and 5a can be compared directly. One observes much
faster etching with fluid flow as compared to pure diffu-
sion; on the average, about four times faster under the pre-
sent conditions (see also Fig. 9). Etch anisotropy is also sig-
nificantly enhanced. For example, for the same etched
depth of 0.58 dimensionless units (note that the cavity
mouth half-width has by definition a unit length), the etch
factor is 1.58 for the case of pure diffusion (Fig. 4a) but be-
comes 2.25 for the case of fluid flow (Fig. 5a), which
amounts to 40% improvement (see also Fig. 10). Further-
more, at early times (T < 20), etching is faster to the left of
the centerline X = 0, and the left mask is undercut more
compared to the right mask. However, the situation re-
verses at later times and the etch rate and mask undercut
are higher to the right of the centerline. These observa-
tions are further supported by Fig. 5b which shows the
flux (instantaneous etch rate) distribution along the etch-
ing cavity walls, for several times during etching. For a
particular time T, the end points of the corresponding
curve show the rate of mask undercut at that time. At early
times the etching rate distribution is very nonuniform
with a pronounced peak to the left of the centerline. At
later times the efching rate distribution becomes less non-
uniform. In order to explain the observed features one
needs to look closer at the hydrodynamic conditions pre-
vailing in the cavity as the cavity aspect ratio changes dur-
ing etching.

The fluid flow distribution in the cavity depends
strongly on the cavity aspect ratio (depth/mouthwidth)
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(5, 11, 19). For small aspect ratios (<1:3), the external flow
invades the cavity, with weaker recirculating patterns de-
veloping in the corner regions. However, for large aspect
ratios, the external flow is incapable of penetrating
the cavity, and a large recirculating eddy develops which
fills almost the entire volume of the cavity. This is shown
in Fig. 6 which is a velocity vector plot of the region within
the cavity. Figure 6a corresponds to the profile of Fig. 5a at
T = 4.0. The cavity aspect ratio is then slightly larger than
1:4 and the penetration of the cavity by the external flow is
evident. Figure 6b corresponds to the profile of Fig. 5a at
T = 95.8. The cavity is now deeper than it is wide and the
external flow is seen not to penetrate the cavity. Instead, a
rather weak recirculating eddy occupies most of the cavity
volume. In addition much weaker eddies develop in the
undercut regions, and transport in these regions can be
thought of as occurring mainly by diffusion. Since trans-
port in the undercut regions is less efficient than in the rest
of the cavity, better etch anisotropy is obtained as com-
pared to pure diffusion, as already mentioned above. How-
ever, for deep cavities this advantage is lost because fluid
flow is very weak deeper in the cavity. The advantage is
regained if some means is devised to enhance fluid flow
within the cavity, even for deep cavities. Kuiken and Tij-
burg (4) made use of free convection phenomena to
achieve this goal. The key is to disrupt the “boundary
layer” at the cavity mouth which prevents efficient com-
munication of the external flow with the flow within the
deep cavity.

Returning to the profiles shown in Fig. 5a, at early times
when the cavity aspect ratio is close to 1:4, the external
flow invades the bottom of the cavity bringing fresh re-
agent in the cavity. The etch rate is then higher around the
area where the fluid first encounters the bottom of the cav-
ity (i.e., around position X = —0.2, see also Fig. 5b and 6a).
At later times when a large eddy almost fills the cavity,
fresh reactant first reaches the area around the right mask
edge, resulting in higher etch rate there and faster mask
undercut. Figure 7 shows a concentration contour plot for
the cavity corresponding to T = 95.8 in Fig. 5a. One ob-
serves larger concentrations around the right mask edge as

Fig. 6. (q, left) Velocity vector plot in the cavity corresponding to T = 4.0 of Fig. 5a. (b, right) Velocity vector plot in the cavity corresponding to

T = 95.8 of Fig. 5a.
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Fig. 7. Concentration contour plot in the cavity corresponding to
T = 95.8 of Fig. 5a. Contour named A corresponds to dimensionless
concentration C = 0.99. Contour B (wall of cavity) corresponds to
C = 0. Linear interpolation applies for the in-between contours.

compared to the left mask. Moreover, the concentration
gradients are higher in places where the contours are
closer together. One observes larger concentration gradi-
ents in the undercut area of the right mask as compared to
the left mask. This implies higher rate of undercutting of
the right mask in agreement with the discussion above.

At lower Peclet numbers, both the etch rate and the etch
factor were reduced, and the etch profiles were less asym-
metric. Such behavior is to be expected since lowering of
Pe is tantamount to decreasing the level of convection. In
fact, for very small Pe the situation is essentially identical
to that of pure diffusion.

Figure 8a shows the shape evolution of a cavity under
conditions identical to those of Fig. 5 except that the sur-
face reaction had a finite speed (® = 1 instead of ® — ). In
the presence of surface reaction kinetic limitations, the
etch rate distribution along the reacting surface is ex-
pected to be more uniform as compared to the diffusion-
controlled case of Fig. 5. Hence the etch profiles shown in
Fig. 8 are less asymmetric compared to the profiles of Fig.
5. In addition the etch rate is lower and the etch anisotropy
(etch factor) is lesser. In the limit of surface reaction ki-
netic control (® —> 0), the efch rate will be uniform along
the reacting surface and independent of the cavity depth.
In such case, the etch factor will be unity. Obviously, the
kinetically controlled etching case is not favorable in
terms of throughput and anisotropy. Figure 8b is a concen-
tration contour plot corresponding to the profile at
T = 96.3 of Fig. 8a. In contrast to the diffusion-controlled
case (Fig. 7), the reactant concentration is not constant
along the etching surface (in Fig. 7 the surface concentra-
tion is zero). An inspection of the concentration distribu-
tion along the etching surface gives an idea of the etch rate
distribution, since the etch rate is proportional to the sur-
face concentration. The undercut of the right mask is again
higher as compared to that of the left mask but the differ-

ence is not as large as in the diffusion-controlled case.

Results on etch rate and etch factor are summarized in
Fig. 9 and 10, respectively. The etch rate shown in Fig. 9
was calculated by dividing the etched depth at X = 0 by
the corresponding elapsed time T. Therefore this is a
“time-average” etch rate in contrast to the instantaneous
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Fig. 9. Etch rate at X = 0 as a function of the cumulative time for
cavities etching under the conditions of Fig. 3a (curve |), Fig. 4a (curve
11), and Fig. 5a (curve H1).
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Fig. 10. Etch factor as a function of cumulative time for cavities etch-
ing under the conditions of Fig. 3a (curve 1), Fig. 4a {curve I1), and Fig.
5a (curve I11).

etch rate which is proportional to the flux (Fig. 3b, 4b, and
5b). In the case of pure diffusion (curves I and II), the etch
rate is infinite at T' = 0 and decreases monotonically with

Fig. 8. (a, left) Shape evolution of a cavity under fluid flow conditions and with @ = 1. Other conditions were as in Fig. 5a. Cavity wall profiles are
shown for dimensionless times T = 0, 7.6, 15.8, 27.4, 43.1, 60.5, 78.6, and 96.3. (b, right) Concentration contour plot in the cavity corresponding
to T = 96.3 of Fig. 8a. Contour named A corresponds to dimensionless concentration of 0.99. Contour K corresponds to dimensionless coricentration

of 0.31. Linear interpolation applies for the in-between contours.
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time. In the case of fluid flow (curve III), the etch rate is
substantially higher especially at the early times. The local
maximum in etch rate at about T = 40 is associated with
the change in flow patterns in the cavity as the cavity
aspect ratio increases (see discussion above). The etch rate
in the case of fluid flow depends strongly on time, which in
turn reflects a dependence of the etch rate on the cavity
aspect ratio. This fact has important practical implica-
tions; cavities of different aspect ratio may be etching at
very different rates. For example, for the same mask thick-
ness, cavities with smaller mouthwidth will be etching
slower if diffusional limitations play a role in the etching
process.

The etch factor in Fig. 10 was calculated by dividing the
etched depth at X = 0 by the mask undercut. For the case
of fluid flow, for which the etch profiles were not symme-
tric, an arithmetic average of the left and right mask under-
cut was used. For pure diffusion, one observes a signifi-
cantly higher etch factor with a mask of finite thickness
(curve II) as compared to the infinitely thin mask (curve I),
especially at the early times. Fluid flow enhances the etch
factor even further, especially at the early times when the
external flow penetrates the cavity. Under the flow condi-
tions examined, the etch factor varied between 2 and 3. In
addition, the etch factor quickly decreased with time at
early times, but became insensitive to time at later times.
These results are in qualitative agreement with the experi-
mental observations of Allen et al: (20). Unfortunately not
enough information is provided by Allen and co-workers
to allow for a direct quantitative comparison with the pre-
sent model predictions.

Summary and Conclusions

A general purpose mathematical procedure was de-
veloped to study the shape evolution of two-dimensional
cavities during wet chemical etching under the influence
of fluid flow. Finite element methods were employed to
solve for the fluid velocity profiles and for the reactant con-
centration distribution in cavities of arbitrary shape. In
particular, the Streamline Upwind/Petrov Galerkin
(SU/PQ) finite element method was used for the convec-
tive-diffusion equation since this method is better suited
for convection-dominated flows (high Peclet numbers),
such as the case studied. A moving boundary scheme was
developed to track the shape evolution of the cavity. The
mathematical procedure was applied to the problem of
wet chemical etching of two-dimensional cavities under
cross flow conditions. The simplified case of etching in a
quiescent solution (no fluid flow) was examined as well.

When etching in a quiescent solution under conditions
of diffusion control, a characteristic bulging of the wall
profiles appeared close to the mask edge, at the early
stages of etching. This bulging was especially pronounced
for an infinitely thin mask but the bulging was much
weaker for a realistic mask having thickness 1/4 of the cav-
ity mouthwidth. In addition, the thicker mask resulted in
significantly better etch anisotropy with only slightly dif-
ferent etch rate.

With fluid ﬁoyv across the cavity, the time-averaged etch
rate increased four times and the time-averaged etch factor
increased by 40% as compared to pure diffusion, under the
conditions studied. The etch rate and etch factor were
found to depend strongly on the cavity aspect ratio, de-
grading as the cavity became deeper. Furthermore, the
etch profiles showed a strong dependence on the etching
time. At early times, when the cavity aspect ratio was
smaller than 1:3, etching was faster to the left of the cavity
centerline (fluid was entering from the left). As etching
proceeded, and the cavity depth increased with a concom-
itant increase in the cavity aspect ratio, etching rate was
faster to the right of the centerline. The above phenomena
were explained by considering the hydrodynamic flow
patterns in the cavity as the cavity aspect ratio increased
during etching.

The problem studied is only a simplified case of a real
etching system. Thus, solution chemistry, complex sur-
face reaction kinetics, gas evolution, the presence of sur-
face films, or of crystallographic effects were not con-
sidered. In addition a simple shear flow was assumed past
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the cavity. However, some of the salient features of the
process were revealed by studying the simplified case.
Moreover, the numerical code can be expanded to study
different flow configurations (such as impinging jet flow),
free convection phenomena, complicated reaction se-
quences, and the effect of laser illumination of the etching
surface.

In mass-transfer controlled situations, the etch profile of
a microscopic cavity depends in a complex manner on the
time-varying multidimensional fluid velocity and concen-
tration fields. Prediction of the etch rate and mask under-
cut under a variety of etching conditions is then difficult to
make based on intuition alone. Powerful mathematical
techniques based on the finite element method can be
used to quantitatively analyze the complex interaction of
transport and reaction phenomena and their effect on the
shape evolution of the cavity. Comparison with experi-
mental data under well-characterized conditions would
greatly add to the usefulness of the mathematical model.
The model may then be used to identify operating condi-
tions that result in high rate anisotropic etching.
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LIST OF SYMBOLS

dimensionless parameter (Eq. [35])

reactant concentration, mols/cm?®

dimensionless reactant concentration (Eq. {14])
reactant diffusivity, cm?¥s

mask thickness, cm

surface reaction rate constant, cm/s

half-width of cavity mouth, cm

molecular weight of solid, g/mol

stoichiometric coefficient in etching reaction (Eq.
[12])

outward unit normal vector

pressure, dynes/cm?

dimensionless pressure (Eq. 14)

Peclet number, dimensionless (Eqg. 15)

Reynolds number, dimensionless (Eq. 15)

time, s

dimensionless time (Eq. [35])

dimensionless fluid velocity (Eq. [13])

fluid velocity at center of cavity mouth, cm/s
velocity of moving boundary along the outward nor-
mal, cm/s

dimensionless velocity of the moving boundary
along the outward normal for the case of fluid flow
V,* dimensionless velocity of the moving boundary
along the outward normal for the case of pure dif-
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Greek
B dimensionless parameter (Eq. [16])
T; boundary surface (i = 1,2,.. ., 6), Fig. 1
L fluid viscosity, poise
v fluid kinematic viscocity, em?¥s
Ps solid density, g/cm?
o parameter (Eq. [11])
T dimensionless time (Eq. [14])
¢ Thiele modulus (Eq. [16])
Q computational domain, Fig. 1
Subsecript
[o) signifies initial condition
Superscript
n signifies the nth time step
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A Photoelectron Spectroscopy Study of CF4,/H, Reactive lon
Etching Residue on Tantalum Disilicide

J. H. Thomas, 111 and L. H. Hammer
Dawvid Sarnoff Research Center, Princeton, New Jersey 08543

ABSTRACT

X-ray photoelectron spectroscopy has been used to characterize CFy/30% H, reactive ion etching residue on the tan-
talum disilicide surface after removing 100 nm of silicon dioxide. This was done to simulate the structure of multilevel
metallization presently being encountered in integrated circuit manufacture. At a pressure of 80 millitorr and a power den-
sity of 1 W/em?, the residue layer formed consists chemically of a mixed tantalum and silicon fluoride and oxide-like film.
This layer is complex and does not appear to contain polymeric fluorocarbon as has been observed on silicon at slightly
higher hydrogen concentrations in the glow discharge. Its thickness is estimated to be 3 nm based on electron escape
depths. The presence of Si0O; causes the surface residue layer to be more oxygen rich in comparison with the uncoated tan-
talum disilicide surface. Sputtering does occur at a self-bias of 300V and results in preferentially removing silicon. Core-
level binding enérgies are reported for tantalum disilicide, the etch residue, the native oxide on the disilicide, and some

related materials for reference purposes.

" Multilevel metallization used in submicrometer inte-
grated circuit manufacture requires that ohmic contact be
made to the first level metallization after reactive ion etch-
ing contact vias through deposited insulator layers such as
silicon dioxide (1). Refractory metal silicides are presently
being used in process technologies such as the “polycide”
process (2-4). The polycide process consists of a conduc-
tive silicide deposited on polysilicon that is used in gate
metallization. For gate metallization, conductive silicides
on polysilicon incorporate the best features of a polysili-
con gate contact along with the low resistivity of the sili-
cide to reduce series resistances encountered in submi-
crometer dimension interconnects (2, 3). Consequently,
this metallization can be used the first level of a multilevel
metallized device structure.

One possibility for first level metallization of high sub-
micrometer reliability devices is tantalum disilicide (2-5).
Tantalum disilicide is readily compatable with standard
circuit processing using common plasma or reactive ion
etching processes. Tantalum silicide behaves as a metallic
conductor with a room temperature resistivity of around
40 pQ-cm after appropriate thermal annealing to form the
stoichiometric silicide (5-8).

Multilevel metallization requires that contacts between
metallization levels be made through submicrometer di-
mension vias etched in an insulating isolation layer such
as silicon dioxide. The etching process, typically reactive
ion etching in the presence of a photoresist mask, leaves a
residue on the metal surface to which the contact is being
made (9-12). As in contacts to silicon (13, 14), this residue
layer adds to the series electrical resistance of the contact
and causes degradation of the high-frequency operation of
the circuit. It is, therefore, important to characterize these
processing residues and determine their origin so that pro-
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cesses can be included or modified to eliminate (or reduce)
the surface residue layers.

In this study, silicon dioxide coated tantalum disilicide
was reactive ion etched in a small scale plasma chamber
attached to an x-ray photoemission spectroscopy (XPS)
system. Fluorocarbon reactive ion etching (in this study,
CF4/30% H; was used), commonly encountered in silicon
dioxide etching and patterning, was used to eteh silicon
dioxide off of the tantalum disilicide surface. The surface
residue layer was studied insitu using x-ray photo-
emission and was compared with other thin surface layers
on related materials. Core-level binding energies for tan-
talum disilicide, its native oxide, the plasma induced resi-
due layer and the effects of atmospheric exposure on the
residue layer are reported. The effect of the presence of
SiO, on the chemistry of the residue layer is discussed.

Experimental

Tantalum silicide was deposited on polysilicon on sili-
con-on-sapphire wafers by cosputtering from a tantalum
rich target in. a Varian 3180 system to a thickness of
200 nm. The tantalum-rich deposit was annealed at ap-
proximately 900°C for 30 min in argon atmosphere. The stoi-
chiometry and film thickness were determined by Ruther-
ford backscattering spectrometry in our laboratory. Films
were shown to be stoichiometric tantalum disilicide
within experimental error. Two wafers were selected from
the batch of processed and annealed wafers. Silicon diox-
ide was then chemical vapor deposited to a thickness of
100 nm on the tantalum disilicide surface to simulate a typ-
ical double level metallization scheme. Etching of contact
vias was simulated by etching the silicon dioxide to the
tantalum disilicide surface using a fluorocarbon reactive
ion etching process. A 60% overetch was provided to as-
sure complete oxide removal. The uncoated tantalum di-





