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Electron kinetics and non-Joule heating in near-collisionless inductively coupled plasmas
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Electron kinetics in an inductively coupled plasma sustained by a coaxial solenoidal coil is studied for the
near-collisionless regime when the electron mean free path is large compared to the tube radius. Emphasis is
placed on the influence of the oscillatory magnetic field induced by the coil current and the finite dimension of
the plasma on electron heating and formation of the electron distribution fur{&fof). A nonlocal approach
to the solution of the Boltzmann equation is developed for the near-collisionless regime when the traditional
two-term Legendre expansion for the EDF is not applicable. Dynamic Monte (@KIC) simulations are
performed to calculate the EDF and electron heating rate in argon in the pressure range 0.3—10 mTorr and
driving frequency range 2—40 MHz, for given distributions of electromagnetic fields. The wall potgptial
DMC simulations is found self-consistently with the EDF. Simulation results indicate that the EDF of trapped
electrons with total energy <edg,, is almost isotropic and is a function solely ef while the EDF of
untrapped electrons with>ed,, is notably anisotropic and depends on the radial position. These results are
in agreement with theoretical analysi§1063-651X97)05403-3

PACS numbdrs): 52.80-s, 52.65-y

[. INTRODUCTION even in the absence of collisions if there is a “phase random-
ization” mechanism that is equivalent to electron momentum
High-density plasmas operating at low gas pressurefansfer in collisions with gas species. Such collisionless
(<50 mtorp have recently attracted considerable attention(stochastit electron heating is well known for capacitively
as primary candidates for the manufacturing of ultra-large-coupled plasmaéCCP3 where it occurs due to electron in-
scale integrated circuit$l]. Inductively coupled plasma teractions with oscillating sheath boundariés7]. Between
(ICP) sources are particularly attractive because of their relathe two extremes of Joule heating and collisionless heating,
tively simpler design. Although ICPs have been known andhere is an important regime of what we call “hybrid” heat-
studied for more than a centufg], the low-pressure operat- ing. In the hybrid regime, an electron “forgets” the field
ing regime desirable for modern microelectronics applicapphase due to collisions, but in contrast to Joule heating, hy-
tions is historically unusual and has not been extensivelyrid heating is nonlocal: the place of the electron interaction
explored until recently. Nonlocal electron kinetics is a dis-with the field and the place where phase-randomizing colli-
tinctive feature of this regime. Most of the recent kinetic sions occur are separated in space. Generally, the behavior of
studies of low-pressure ICF8-5] have been limited to the electrons in this regime is governed by three frequencies: the
collisional regime for which the electron mean free prtts  frequency of the rf fieldo, the collision frequency, and the
small compared to characteristic discharge dimensions. Modsounce frequency) defined below. Depending on the rela-
ern applications, howerer, call for a plasma that is as free ofive magnitude of these frequencies, different electron dy-
collisions as possible. Collisionless electron heating andhamics and a variety of heating regimes can be distin-
anomalous skin effect are typical of the near-collisionlesgyuished. Both hybrid and collisionless heating belong to the
operating regime, for which is larger than or comparable to category of non-Joule heating.
the discharge dimensions. Interesting kinetic effects are There is one property that fundamentally separates ICPs
caused by thermal motion of electrons in this regime. from CCPs. The magnetic field is a crucial factor for ICPs
Electron heating is one of the key processes that detesince its time variation induces an electric field that acceler-
mine the power deposition and spatial uniformity of theates electrons. Contrary to the electric field in the CCP, the
plasma. Heating is a statistical process that transfers the dirductive electric field in the ICP is solenoidal, i.e., nonpo-
rected energy acquired from the field into random energy ofential in nature. The field lines are closed within the plasma
thermal motion. At high gas pressures, electron collisionsand do not form oscillating sheaths as in CCPs. However,
with neutral atoms are responsible for this transfer; colli-due to the nonpotential nature of the field, charged particles
sional (Joule heating predominates. Heating at low pres-change energy in a round-trip through the field region even
sures is due to a combined effect of electron interactions witlin the absence of collisiorj8]. The existence of collisionless
the fields, reflections from the plasma boundafjgstential  heating in the ICP was suggested by Godgélkl.[9] based
barriers, and collisions with gas species. Heating may occuron measurements of external electrical characteristics of an
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inductive discharge. Turndil0] has drawn similar conclu-

sions by calculating the surface impedance of a planar O 3Z P, O
plasma slab using a particle-in-céRIC) Monte Carlo colli- JBZ | |
sions simulation of electrons. He found that the real part of O | O
the surface impedance does not vanish with a reduction of \

gas pressure, indicating, in an indirect way, the existence of
power absorption in the collisionless limit. An analytical
model of electron heating was developed Iri] for a spa-
tially homogeneous plasma with a Maxwellian electron dis-
tribution function. It was assumed that electrons interact with
inductive electric field within a skin layer and, due to colli-
sions with plasma species, forget the phase of the field be-

tween subsequent interactions. The model assumed implic- © 5 ®

itly that the electron mean free path does not exceed the Ee(r) Eq(1)

characteristic dimension of the plasma so that any effects of

finite size of the plasma could not be predicted. FIG. 1. Sketch of an inductive discharge with a coaxial solenoi-

In the near-collisionless operating regime, electron “col-dal coil. A time-varying magnetic fiel, induces a solenoidal
lisions” with plasma boundarie@otential barriersare more  electric fieldE,. An electrostatic potentiap(r) is generated by the
frequent than collisions with gas species. Under these condpxcess positive space charge. The depth of the potential dygll
tions the finite dimensions of the plasma become an imporensures the absence of a net charge flow to the dielectric wall of the
tant consideration. The momentum gained by electrons frorihamber.
the electromagnetic forces in one place can be transferred by
thermal motion to another place where the momentum majcs. An analysis of the anomalous skin effect in ICPs is be-
lead or lag the phase of the electric field, depending on thgond the scope of this paper. It is known that penetration of
field frequency and transit time of electrons. Phase correlaglectromagnetic fields into a bounded discharge plasma may
tions and transit time resonances have a marked influence &¢ accompanied by nonmonotonic field profiles, resonance
the penetration of electromagnetic fields into a bounded®hemonena, etd.14,17. A review of classical and recent
plasma[12]. The influence of finite-size effects on electron works on the anomalous skin effect can be found in Ref.
heating was analyzed [13] for a planar rf discharge. It was [18].
found that the mechanism of heating depends on the velocity The structure of the paper is as follows. Section Il pre-
component affected by the electron interaction with electrosents an analysis of collisionless particle dynamics. The axial
magnetic forces. The rf magnetic field in the ICP may have @ymmetry of the problem enables one to rely on the strict
major impact on this interaction. constancy of the canonical angular momentum to separate

Most papers on ICPs have neglected the influence of ththe radial and azimuthal motions. In Sec. Il we develop a
oscillatory magnetic field® on electron motion. The possible nonlocal approach to the solution of the Boltzmann equation
influence of theB field on the anomalous skin effect in in- for electrons in a near-collisionless ICP. Section IV describes
ductive discharges was mentioned by Demirkhamdwal. the technique of dynamic Monte Carl®MC) simulation.

[14] more than 30 years ago. Recently, Cohen and Rognliefihe results of the DMC simulations in argon are presented in
[15] have analyzed the influence of tBefield on electron Sec. V for a wide range of discharge conditions. Section VI
heating in ICPs. They pointed out that the Lorentz force duegontains a discussion of the results.

to the B field may exceed the electric force in the ICP. The

Lorentz force.cha.nges the_ direction of the velocity kick an Il COLLISIONLESS DYNAMICS

_elec_tron acquires in _the skin Iay_er. As a result, eIectr_on he_at- OF CHARGED PARTICLES

ing in the near-collisionless regime may be substantially dif-

ferent if the oscillatory magnetic field is accounted for in  Consider an inductively coupled plasma that is produced
theoretical analysis or numerial modeling. Gibbons andn a dielectric tube of radiuR inserted into a long solenoidal
Hewett [16] have observed in a PIC simulation that both coil (Fig. 1). The electric and magnetic fields induced by the
electron velocity components in the plane orthogonaBto rf current in the coil generally have both axial and circum-
are affected by collisionless heating. Only the azimuthaferential componentgl9]. The axial component of the elec-
componentv , would have changed if thB field were ne- tric field E,, which is due to the rf potential across the coil
glected. terminals, provides capacitive coupling. It can be eliminated

The purpose of the present paper is to analyze electroar substantially reduced either by a metal screen or by an
dynamics and the mechanism of electron heating in weaklglectrolyte enveroping the discharge vesg#)]. A time-
collisional ICPs accounting for the oscillatory magnetic field varying magnetic field, gives rise to a solenoidal electric
and the finite dimensions of the plasma. The problem idield E, according to Faraday's law. Thg, field imparts
treated analytically and numerically by usif@ integration  kinetic energy on electrons and an inductive discharge can be
of equations of single-particle motiofl)) approximate solu- sustained. Such electrodeless dischar@esetimes called
tion to the Boltzmann equation, an@) dynamic Monte ‘“ring discharges’) have a long and interesting histofg].
Carlo simulations. We have chosen a simple cylindrical sysHowever, the low-pressure operating regime has not been
tem with prescribed profiles of the fields rather than solvingthoroughly studied yet.
the Maxwell equations self-consistently with electron kinet- We are interested in the case when the mean free path of
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plasma species exceeds the tube raBiuso that the particle
motion is almost collisionless. Charged patrticles are acceler- o¥. |
ated in the azimuthal direction by the inductive electric field
E, (Fig. 1). TheB, field produces a Lorentz force acting in
the radial direction. When averaged over the rf period, this
force attracts particles towards the axis regardless of the par-
ticle’'s charge. This “radiation pressure” effect is well
known in high-temperature plasmgl]. In addition to the rf
fields, a substantial static space-charge electric figlds
built up in the discharge. This field accelerates positive ions
towards the wall and confines the majority of electrons in the
plasma providing equality of charge flow to the dielectric
wall of the chamber. The ion motion is a free fall. Electrons
can escape the plasma after acquiring enough kinetic energy
to overcome the potential barrier near the wall. At steady

. . . . 0 Fi r R
state, each electron during its lifetime must produce on av- min radial position max
erage an electron-ion pair in ionization events.

e¥y(pe")
om

FIG. 2. Schematic of the effective potentitiy(r) [Eq. (6)] for
p,>0 and forp,=0. r,, andr ., indicate coordinates of turning
It is convenient to represent the space-charge figlthy  points for an electron with energy, .
its scalar potentialp and to use the vector potential for
describing the alternating fields generated by the coil current. pg q(A§>
By virtue of azimuthal symmetry of the problem, the only Wo(pg,r)= WJF >m
nonvanishing component @&k is the azimuthal component
Ay(r,t). Magnetic and electric rf fields are recovered from
the relationsd(rA,)/dr=rB, and —JA,/dt=E,. These
fields do not affect the particle motion along thexis. Col- p,A
.. . . . [
lisionless motion in the plane normal B, is governed by v,=- -
the Hamiltonian 21] mr

A. Equations of motion

+(r) (6)

and an alternating part

o (A= (AZ). ™

2 Here (A%) denotes the time-averaged valueAJf(r,t) (the
+qe(r), (1)  time-average of\, is zerg. The first term on the right-hand
side of Eq.(6) is due to the centrifugal force, i.e., an effec-

tive force in ther direction resulting from particle motion in
the @ direction. The second term on the right-hand side of
Eqg. (6) is the pondermotive or Miller force that describes
“radiation pressure”[21]. Radiation pressure forces both
electrons and ions from regions of high rf field into regions
of weaker field, i.e., towards the tube axis. Since the Miller
force is inversely proportional to particle mass, its influence
on ions is typically negligible compared to the electrostatic
) ) ) ~ force, which accelerates ions towards the wall.

Strict const.ancy op, allows separating the radial and- azi-  For electrons, the alternating part of the potertital may
muthal motions. The anglé(t) can be found from Eq2) if  pe considered as a small perturbation at relatively high fre-
r(t) andA, are known. On the other hand, the radial motiongyencies. In the high-frequency limit, the perpendicular en-

2
1 —qrA
ho P (peq o

“2m ' 2m r

wherem andq= * e are the mass and charge of a particle,
r and # are cylindrical coordinates, ang, and p, are ca-
nonical momenta. Since the Hamiltoniél) is independent
of 6, the canonical angular momentym is an invariant of
the motion:

py,=mr26+qrA,= const. 2

iS independent 09: ergy Of e|ectrons
mr=p,, 3 g, =mré2+e¥y(p,.r) (8)
v is a constant of the motion and there is no electron heating.
Pr=—q—" (4 The potential¥, confines the majority of electrons in the
plasma. Setting),=0 determines, for each set ef, and
where Py, the coordinates of two turning points,, andr . (Fig.
2). The period of bounce oscillations
1 p(,—qrAg)2 mv?
Y(pg,r,t =—(— +¢(r)=——+¢(r " max dr
(Por 0= 50| = ()= 55+ o(0) o, =2 .
(5) rmin V2[&, —€¥o(pg,r)]/m

is an effective potential. It is useful to separaleinto a  and the bounce frequen€y(e, ,p,) =27/T are functions of
time-independent part electron energy, and angular momentum, .
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B. Low-density plasmas

Electromagnetic fields in ICPs are spatially inhomoge-
neous even in the absence of a skin effect. To distinquish
finite-size effects and the field shielding by the plasma, let us
consider the collisionless skin depéh-c/w,, wherew, is
the electron plasma frequency amds the speed of light. For
n.=10%cm™3, =5 cm, which is equal to the radius of the
tubeR considered in this paper. At low plasma density, when
6> R, the skin effect is negligiblgSimple estimates indicate
that the ambipolar diffusion regime is established long be-
fore the field shielding beginsin any case, howevelg,
must vanish on the axis due to azimuthal symmetry of the
problem. In the absence of skin effect, the rf current in the
coil with angular frequencyw produces electromagnetic
fields with the vector potential

radial position (cm)

Ml
30

ot

Ay=Aq(r)sinwt=(Bgr/2)sinwt, (10

FIG. 3. Radial electron position as a function of time for reso-
nance conditionsB=1 G, w=7x10° s™! (1.1 MH2), and
0 2w0=1.27, p,=0.1ImwR?, R=5 cm. A rectangular potential
well was assumed. The time modulation of the amplitude of bounce
oscillations corresponds to phase oscillations of the electron energy
with respect to the electric field.

which corresponds to a spatially uniform magnetic field
B,=Bgsinwt (11
and linearly varying electric field

Ey= —(Eor/R)coswt (12 This resonance may have a major impact on gas breakdown
_ _ _ in inductive discharges.
of amplitude Eo=BowR/2. The ratio of the electric force  Tne resonance between bounce oscillations and rf fields
eE, to the magneti¢Lorent? forceevB is wr/2v. This ratio  can rapidly accelerate electrons. The amplitude of electron
decreases with a decreasewofnd can be rather small at low qscjllations increases with tim@ig. 3. Under breakdown
frequencies even at=R. The magnetic field can therefore conditions =0), electrons would escape to the wall when
have considerable impact on electron dynamics. the amplitude of their bounce oscillations equals the tube
Consider collisionless electron motion under the influencgadius. In a discharge, the potentia(r) is nonparabolic in
of the rf fields (11) and (12) and an electrostatic field the vicinity of the wall due to the presence of a space-charge
E,=—dg/dr. A similar problem was treated by Weibel sheath. Equationl4) is no longer valid at that location. Due
[22], who analyzed stable orbits of charged particles in elecig electron reflection from the sheath, the bounce frequency
tromagnetic fields of a circular waveguifi@henAq(r) isa () pecomes a function of electron energy. That detunes the
Bessel functiohfor ¢=0. In our case, the first term &;  frequency, generally leading to phase oscillations with re-
gives no contribution to the force and the equations of Mospect to the fieldsee Fig. 3 The variations of the bounce
tion (3)—(5) are reduced to amplitudes shown in Fig. 3 correspond to variations of elec-
tron energy with time. Under the conditions of Fig. 3, the
limited energy excursions correspond to regular electron mo-
tion. Under certain conditions, due to the nonlinearity of os-
cillations[the dependence @ one, in Eq(9)], the motion
wherew, =eB,/m is the Larmor frequency. For the particu- of electrons may become chaotic. That corresponds to the
larly simple caseE,(r) =Eqyr/R, Eq. (13) is equivalent to a onset of collisionless heating. We shall illustrate the origin of
set of two completely decoupled equationsXfetrrcosd and  the chaos and the appearance of collisionless heating for the
y=rsing, both of the Mathieu type more practical case of a thin skin layer, which is analyzed in
the next subsection.

pj

2 e
sz‘(%) rsinzwt—?Er, (13)

2

xyt=- 92( 1- S_QLzCOSZwI Xy} (14 C. High-density plasmas

For high-density plasmas with<R, the rf fields are lo-

Equation(14) describes a linear oscillator under the influ- calized within a thin skin layer near the wall. Electromag-
ence of a harmonic external force of frequency.2The netic forces act impulsively rather than continuously on
frequency of natural oscillation@=(wf/8+eE0/mR)1’2 is  bouncing electrons. Sincé<R, one can neglect the time
independent of energy. A parametric resonance is known teé=25/v, electrons spend in the skin layer compared to the
occur when the frequency of the force 4P is close to  bounce time,, ;—t, between two sequential interactions. In
kQ, wherek is an integer. Fof)=w, /\/8 (no electrostatic the presence of an electrostatic potential in the plasma, only
field), the basic resonancé&+ 1) takes place in the interval sufficiently energetic electrons are capable of overcoming
[22] the potential barrier and reach the skin layer. For these elec-

trons one can neglect the influence of the electrostatic poten-

1.15<(w [2w)<1.89. (15  tial for calculation of the bounce period from E®):
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R W whereA¢ is the magnitude of the energy kick. The phase of
T=—1\/2me, — (—) . (16)  the rf field appears to be random for electrons if small
e R . . . .
changes of electron energy in the skin layer result in consid-
rable changes in phase. In the vicinity of the maximum of
(g), whereT is weakly energy dependent, small changes in
T(e) also result in a small change in the phase over the
period of bounce oscillations. The heating becomes second
order with respect tde. On the contrary, fof —0, where
the derivatived T/de tends to infinity, even small changes in
energy may result in considerable changes in phase; the de-
I[l1ominator of Eq.(21) becomes zero. Far from these pecu-
liarities, which are specific to cylindrical geometry, inequal-
ity (21) requires thatwTAe/e>1. This condition, well
I%nown for a planar cas4], states that for small-amplitude
icks Ae, the driving frequencys must be sufficiently large
so that the field could change many times during the bounce
period. For smalp, (as in the planar cagethe bounce pe-
riod T decreases with an increase in energy and the motion
of energetic electrons is more regular. Equati®h imposes
_ restrictions on the maximum energy electrons can achieve by
bns1=Ent @Tlenra). A7 e collisionless heating mechanism.
Integrating the equations of motion in the skin layer yields 10 Proceed further, we have to calculate the energy kick
per single pass through the skin layer. For the sake of sim-
ens1=en+Q(&), (18) plicity, let us assume, as ii1,15, an exponential decay of
the fields within the skin layerA ;= Aqjexd —(R—r)/6]. For
wheree,,1=¢&(ty+1— 7) ande,=&(t,— 7) are radical elec- Q<e, integrating along unperturbed trajectories +uv,t,
tron energies before the+ 1 andn kicks, respectively. The we obtain[11,15
energy change in the skin lay€) is proportional to the
power (the product of forceedW,/dr and electron velocity

Due to the two-dimensional nature of the problem, the perio
T is a function of two variablep, ande, . The periodT
vanishes for particles witpp, =0 moving along a circle of
radius r~R. Another limiting case, namelyp,=0, re-
sembles a planar geometry. Fpg+#0, the periodT has a
maximum with respect te, . Due to strict constancy of the
canonical momentunp,, a change ire, in the skin layer
corresponds to a change in radial electron velocity. Thus, i
the limiting caseS<<R, electron interactions with the rf fields
affect only the radial part of electron energy.

Let us construct a mapping relating the values of variable
between sequential interactions. L&t designate the phase
of the field (¢,=wt,) at the moment of theath electron
reflection from the plasma boundaryrat R. The phases of
the field between two sequential interactions are given by

J ) 0T
r) evaluated along a trajectof23] QP Pr,£) = @ SINE(2py/R+ M 5COK) 77 5.
(22
th+7. W4 (r(t),t
Q=e rl(a—r())dt. (19)
ty—7

wherew, =eB,/m is the Larmor frequency in the magnetic

: : : field Bo=Ay /6. Two points are worth mentioning regarding
The difference equationd7) and (18) are equivalent to the Eq. (22). (3) Evidently, the maximal energy can be acquired

equations of motion3) and(4). The value of the derivative if the electric field remains in the same direction during the

gg[ﬁ.(g ¢n defines the degree of phase correlations. The Mentire electron transit through the skin layer. However, since

the amplitude of the induced electric field {x w) decreases

with w, the optimal conditions for the energy gain take place
— 1’ =1 (20 at o7=1 whenQ reaches a maximum with respect ofr.

(b) The term ofQ linear with respect taw, § vanishes for
L ) p,=0 due to symmetry of the problem.
serves as a rough criterion of local phase instabj®yl. If " ¢ important difference of our analysis frda], where
Eq. (20) holds true, electron trajectories become chaotic inye (f magnetic field was neglected, is in the direction of the

spite of the fact that the equations of motion contain NOe|acity kick. Accounting for the magnetic field results in a

random forces. In some sense, the chaotic component of t'}?elocity kick normal to the plasma boundary, similar to that

motion remains weak compared to the regular component: {ying place in a capacitively coupled rf dischafds]. The
manifests itself on larger spatial and time scales in comparigjrection of the velocity kick greatly influences the dynamics
son to the regular bounce motion. Chaotic dynamics COrTes¢ 1o ncing electrons: for instance, in the planar case, kicks
sponds to “slow” electron diffusion along the *

on oW (e "energy nharallel to the boundaryas in[11]) imply the absence of
axis” from regions in phase space where particles are aburygjisionless heating[13]. Contrary to the capacitively
dant to regions where particle density is low. Since the elecéoupled plasma, electrons entering the skin layer with zero

tron distribution function(EDF) usually decreases with en- o;imythal velocity experience no energy kick in the linear
ergy, such a diffusion corresponds to collisionless eIeCtrO%pproximation: the first term in Eq(22) vanishes for

heating. =0. In the linear approximation, the mappi and
Using Egs.(20) and(16) and taking into account only the ng) can be written in tﬁ)]% form ’ PPig?)

linear term of¥, in Eq. (7), one obtains from Eq20)

’ d§n+1
dé,

NGR

oTAe |(py/R)?>—me] n
£1’

4(1)|_ X
e 2ms—(p0/R)221’ (21) 5n+1_5n+ ® PSInfn

(23
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FIG. 5. Characteristic frequencies for an argon discharge for

. : . . . electrons with an energy of 5 eV, a plasma density dft bon—3,
I!nes) _ele_ctron dynam|c§ for the case of a thln'skln layer. The solldand the tube radiuR="5 cm: angular frequency, bounce fre-
lines indicate the ma.1X|maI. \(alues of thg radial elect.ron engrgy uency(, transport collision frequency, and the frequency of
that can be reached in collisionless heating for a particular value o?:oulomb interaction among electrons,.

the angular momenturR.
into two parts can be performed for the free-flight regime as
2R V&n+a N 20 Peost En+1—1 well [26,27. In rf discharges, one can separate rapidly and
n slowly varying parts of the EDF. For trapped electrons, the

= :
TS &utPt o (Ene1t D*Ens . ped ele
(24) slowly varying part turns out to be almost isotropic. Further-

more, by performing an appropriate spatial averaging, the

where P=p,/mwdR and £=2&/m(wd)%— P? are dimen- kinetic equation for the isotropic part is reduced to an ordi-
sionless momentum and energy, respectively. Since theary differential equation. Thus, for the majority of elec-
transformation fromn to n+1 is generated by Hamilton’s trons, the principal part of the EDF turns out to be a function
equations, the mappin@3) and (24) must be area preserv- of a sole variable, the total electron energy.

ing. The last term in Eq(24) accounts for the first-order
change in phase to ensure area preservafidh In variables A. Nonlocal approach
£ andP, the boundary of chaos defined by E81) becomes

FIG. 4. Regions of regulatabove and chaotic(below solid

It is convenient to use invariants of the particle motion as
independent variables in the Boltzmann equation. Taking ad-

2_
4oR P\/E| P-4 1. (25)  vantage of the azimuthal symmetry of our problem and using
the canonical momentum, as an independent variable, the

wd (E+1)(E+P?)?
Boltzmann equation for electrons can be written in the form

This boundary is shown in Fig. 4 for typical discharge con-[2g
ditions, ®=8.5x10" s~ (13.56 MH2, w =1.7x10" s~

(Bp=1 G), 6=1 cm, andR=5 cm. The dashed line corre- of of . of

sponds to the maximum of (£), where heating becomes Eﬂ)rgﬂlra—pr:& (26)

second order with respect the. Since collisionless heating
affects only the radial part of electron energy, electrons Car\)vheres is a collision operator ang. is given by Eq.(4)
be heated up to radial energi 6)?/2~2 eV for the S Lo : o
P gies( o) The electron distribution functiof in Eq. (26) is a function

of p,,ps.Pz.r, andt. Since there is no variation withand

conditions of Fig. 4. An increase @, or a decrease ab
leads to an increase of these energies. X .
g 0, these coordinates have been omitted. Also, the term
pdfldp, vanishes because,=0 [see Eq.(2)]. According

lll. BOLTZMANN EQUATION FOR ELECTRONS to Eq.(26), electron motion along is coupled to the motion
The electron distribution function in a rf discharge is ain the (x,y) plane solely due to collisions.
function of time, three electron velocities, atat least ong The ICP is a weakly ionized plasma. For the majority of
spatial coordinate. In general, the solution of the Boltzmanrelectrons, the frequency of electron collisions with neutral
equation for the EDF is a formidable numerical task. For thatoms exceeds the frequency of Coulomb interactions among

reason, the development of reliable approximations is valuelectrons(see Fig. 3. In the pressure range of interest, the

able. The traditional two-term Legendre expansion of thebounce frequency) exceeds the momentum transfer colli-
sion frequency. In argon(as in many other gasethe total

EDF is valid only for the collisional regime<R [25]. How-
ever, due to the large difference between momentum anftequency of inelastic collisions* (which includes excita-

energy relaxation rates of electrons, a separation of the ED#on and ionization of atomss small compared to in the
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energy range of interest. The difference betweeand v* where the angular brackets designate time averaging over a
(i.e., the difference between momentum and energy relax{ period
ation rateg can be used to simplify the Boltzmann equation.

Let us rewrite Eq.(26) using the transverse energy (fy=t :1f2”"”f at (32
[Eq. (8)] as an independent variable " 2x ) '
ﬂ+ of _ea‘l’l ot (f—Fo)+S* For the majority of electrons, the differendg,— Fo, is ex-
at U\ ar . ar Urae, " 0 : pected to be rather small, so that the energy relaxation term
+ 27) S* in Eq. (31) may exceed/(fyo—Fy).

The first two terms of Eq(30) are recognized as the total
Now, the EDF is a function of, ,p,,p,.r, andt, while the  time derivative in configuration space. Thus the solution of
radial electron velocity, =2 (e, —e¥,)/m is a function Eq. (30) can be found by integration along electron trajecto-
of independent variables. The first term on the right-handies [12]
side of Eq.(27) describes momentum transfer in col!isions_ . pn of
with gas species. The scattering is assumed to be isotropic flzef ds e "Su, (t—S)—[r(t—s),t—S)]—.
andF, designates the isotropic part of the EDF 0 or de,

(33

1
Fole)= EJ fdQ,, (28)  Having expressed the alternating payrin terms of the main
partf,, we may substitute E433) into Eq.(31) to obtain an

which is assumed time independent for reasons discussé&fluation forfg
below. Integration in Eq(28) is performed over angles in Jf
velocity space and=¢, + p§/2m denotes the total energy. Ur(_o
The termS* on the right-hand side of Eq27) describes or
inelastic processes such as excitation and ionization of at- (39
oms, excitation of molecular vibrations and rotations, energy
loss in elastic collisions with atoms, and Coulomb interac-Where
tions among electrons. These processes can be divided into

- : ; : ; : ; % A 2 A ot
guasielastic and su_bstgnually inelastic. .Qua13|elast|c pro-Js:ezf ds e ”3<—Ur(t—s)—[r(t—s),t—s]>—
cesses, such as excitation of molecular vibrations and rota- 0 ar ar dey
tions, energy loss in elastic collisions with atoms, and Cou- (35
lomb interactions among electrons, can be written in a i
Fokker-Planck form[25]. Substantially inelastic processes IS the electron flux along the, axis caused by electron
correspond to removing high-energy electrons and replacing&ating.

them by low-energy ones. For instance, excitation of a single Consider trapped electrons with <e#,,. The bounce
atomic level with energy* is described by motion of these electror{glescribed by the first term of Eq.

(34)] occurs much more rapidly than their displacement
Y along the energy axis; the first term in E§4) dominates.
Si=—vi(e)f+\/—vi(e")f(e). (290  This term vanishes if, does not depend explicitly an i.e.,
& if fo=F(e,,py,p;)- An equation forF can be obtained by
In this process a high-energy electron loses an energy quaflviding Eq. (34) by v, and integrating over the discharge
tum &* and reappears at energy=c—zs*. Let v* desig-  CTOSS section acc_e55|ble to electrons with energy This
nate the frequency of all substantially inelastic processes inerocedure of spatial averaging results 26|
cluding ionization. For most gases>v* in the considered 9 JF o
energy range. AI§0,_ for plasma densitie_s typical to ICPs, (;,_D(SL ’p")a_ =v(F—Fg)—S*, (36)
v> v, for the majority of electrongsee Fig. 5. Thus the €1 €1
inelastic collision ternS8* in Eqg. (27) is usually small com-

J
) —0,5—Ju(e1 1Py =~ (o= Fo) +S*,
€1
€1

where
pared tovf.
The EDF may be expressed as the sum of a rapidly vary- froadl [
ing partf, and a slowly varying part,. The latter is almost D=e29f —f ds e *s
time independent fow>v* [25]. The equation forf; is fmin Ur J 0
av v
af af ov,  of (=S —r(t—5) t—
&—tl+vr(é,—rl _ea_rlvrﬁ:_]/fl' (30) X< ar vr(t=s) ar [r(t=s),t=s] @37
€L

is the energy diffusion coefficient arfd is the bounce fre-
The equation foffo(e, ,py,pPz.r) is quency for an electron with energy, and canonical mo-

mentump,. The overbar denotes spatial averaging:
afo v, ofy
Uy o] T eTUrﬁ_ =—v(fy—Fy) +S*,
e L g=0 —dr. (39
(31) Fmin Ut
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Equation(36) describes a complex process of energy re-
distribution between three degrees of freedom. Heating pro-
duces an electron flux along tle axis towards high ener-
gies and thus causes a departure of the EDF from an
isotropic one. Elastic collisions tend to restore the isotropy of
the EDF. They act on a time scale that is long compared to
the bounce time, but short compared to the electron lifetime,
resulting in an almost isotropic distribution of trapped elec-
trons. Whenv>v* holds true, Eq.(36) can be simplified
even further. The EDF can be written as the sum of an iso-
tropic part Fy and a small anisotropic additioR;<<F:
F(e, .ps,Pr)=Fole)+Fi(e, ,pg,Pz). The equation for the
isotropic part has the form

phase shift o

d dFO__ -15—||||—
ED*’(S)E__S*' (39

®/Q
where D (&) is the energy diffusion coefficient averaged
overp, andp,: FIG. 6. Phase shiftv between oscillations of the EDf; and
oscillations of the accelerating for¢eq. (43)].
1

Do(e)=5

f f . o . D(e.,pp)dpydp,. (40 B. Energy diffusion coefficient for a thin skin layer
Pyt p;<2me

The induced electric field in a cylindrical ICP is spatially

The energy diffusion coefficierd, contains all information inhomogeneous even in the absence of the skin effomt
about electron heating and determines microscopic charactdrig. 1). The magnetic field becomes spatially inhomoge-
istics of the electron ensemble such as the principal part afieous only due to the field shielding by the plasma. For
the EDF,F,, and macroscopic quantities such as the rate o6<R, we consider only the linear term oF, in Eq. (7),
power deposition into the plasma. which gives the principal contribution to the electromagnetic

Thus, similar to the collisional case< § [3,4], electrons  force for electrons with nonzen, . In the limiting case of a
are separated into two groups with respect to total energythin skin layer§<R, retaining only the linear term d in
trapped electrons witlk <eg,, and “free” electrons with  Eq.(22), integration of Eq(33) can be carried out to give the
e>edg, . For trapped electrons, the kinetic equation is re-oscillating part of the EDF in the form
duced to an ordinary differential equation, Eg§9). For free .
electrons, the more general equation, E8d), should be afo ot
used. These electrons are capable of escaping the discharge ~ [1(¢1 *pﬂ’t):AgEnZO e "nsino(t—ty).  (42)
and their EDF depends explicitly on radial position. More-
over, atA>R, the EDF of free electrons becomes notablyHereAe is the energy kick in one pass through the skin layer
anisotropic. While in the collisional case<R considerable andt, designates the time of threh electron interaction with
anisotropy of the EDF appears only at a distance approxithe skin layer. Consider the hybrid regime when chaotization
mately equal to\ near the walldue to the absence of elec- of electron motion is due to collision4.3]. For this regime,
tron flux from the wall, in the free-flight case the EDF an- using the approximatioty,~27n/Q, we find
isotropy manifests itself everywhere. Since only those
electrons for which, (&, ,p,,R)>0 can escape to the wall, Ae dfg

the velocity of an escaping electron must satisfy the condi- =% E{dbl(x,y)smwt—<1>2(x,y)c05wt}, 43
tion

where x=27w/Q, y=27v/Q, and functions®,; and ®,

Py are defined as
e — m_R5> e¢w . (41)
_ expy —Cox (a2

Thus electrons witlp ,~0 that move away from the axis can " cosly —cosc
escape ik, >eq¢,,. Since these electrons are present only in _
the vicinity of the axis, the EDF at~0 decreases rapidly o SINX (45)
with energy starting at, ~ed,,. For largerr, such a de- 2" cosly—cos<”

crease of the EDF begins at higher. Consequently, the

EDF ate, >e, becomes a complicated function of radial The functionf, oscillates with frequency and with a phase
position and angles. While free electrons are primarily re-shift «=arctan,/®,) with respect to the oscillations of the
sponsible for the dc component of the electron current anforce d¥,/drxsinwt. The phase shifix is small at high
give considerable contribution to the energy balance at lowpressures, wherv>(). At low pressures, in the near-
pressures, their contribution to average quantities such a®llisionless regime <)) the phase shiftr is a periodic
electron density, temperature, and power deposition is, ifiunction ofx with a period 27 (see Fig. 6. Under resonance
general, negligible. conditions, the amplitude of, may be quite large due to



3416 V. l. KOLOBOV, D. P. LYMBEROPOULQOS, AND D. J. ECONOMOU 55

In the case of frequent collisions> (), the energy diffusion
coefficient(46) is particularly simple

D=(Ag)%Q. (49)

It is interesting to note that the collision frequenecyoes not
appear explicitly in Eq(49) even though collisions are re-
sponsible for phase randomization.

For collisionless heating, the energy diffusion coefficient
can be obtained using a random-phase approximafiGh
The resulting expression f@ coincides with Eq(49). Al-
though the mechanism of phase randomization is different in
the collisionless and hybrid regimes, the heating rate de-
scribed by Eq(49) turns out to be the same. This is due to
the fact that, for the considered hybrid regime, only electrons
at a distance. from the skin layer participate in the heating
process.

The energy diffusion coefficients given by E¢46)—(49)
are valid for both planar and cylindrical coordinates. To cal-
culate the EDF in the cylindrical case, we have to average
D over angles according to EGR0). Introducing cylindrical

FIG. 7. Function®, [Eq. (43)] that describes phase correlations COOITdInateSP.andﬁ in the (p,.p,) plane, we obtain, for the
for hybrid heating regime. Strong resonances between bounce og-art'CUIarly simple casé49),

cillations and rf fields are observed in the near-collisonless regime 2 2
(0 0)" M(w?)
(v<Q) at w=kQ, wherek=0, 1, 2, . .. . D,= PmeY
R 2

m(w8)?
2¢

: (50

strong correlations of the field phases and large energy ex- : ,
cursion compared to energy kidks per single pass through WhereY(x) is defined as

the skin layer. 3 2 =3

The second term of;, shifted in phase byr/2 with re- Y(x)= Ef27dﬂfldpp cos (1 stmzlz) 1-P
spect to the force, produces no work when averaged over one 2Jo 0 (1-P°+x)
period. Only the first term contributes to the power absorp- )
tion in the plasma. From Eq$37) and (43), the energy dif- _ 1 [ —23+18  (—3—-6x+5x )arctan14/x
fusion coefficient for the hybrid heating regime is 16 3 VX '

1 (51
Dzz(Aa)ZQ(I)l(x,y). (46)

Expression(50) differs considerably from the energy diffu-

I . e . sion coefficient
In limiting cases, this energy diffusion coefficient was ob-

tained in Ref[13] for a planar geometry. The energy diffu- (eEN)2p®
sion coefficient is a product of a single energy kick in the Dfm- (52

skin layer, the bounce frequendy, and the function®,

which describes the phase correlations between successiygich describes Joule heatifig]. The principal difference is
kicks. At y<1, function ®,(x,y) exhibits resonances at that Joule heating is locdthe energy diffusion coefficient
x=2mk, wherek is an integer(see Fig. 7. The energy dif- (52) s a function of the local value of the electric figld

fusion coefficient while non-Joule heating is nonlocal. The energy diffusion
) coefficient(50) is determined by the entire profile of the rf
D= (Ae) al1+ i v fields in the skin layer. Also, contrary to E2), D, in Eq.
2 m v+ (2Q/m)[1—cod 27w/ Q)] (50) does not depend explicitly on gas pressure: the collision
4 frequency does not appear in E§0). The energy diffusion

coefficient (50) exhibits a maximum as a function of the
is anomalously large for resonant particles with k(). For  productw s and increases monotonically as a functionsof
v—0, D tends to aé function. Far from resonances, the (see Fig. 8
second term in the set of large square brackets of 4q).is The EDF calculated from Ed39) with D, given by Eq.
small. At low excitation frequencie®?<2v(), the energy (50 is shown in Fig. 9. The EDF is found with neglect of the
diffusion coefficient(46) also reaches a maximum due to electrostatic potential in the plasniaectangular potential
phase correlations of the rf field with respect to electron MOwell) and no Coulomb interactions among electrons. In a

tion semilogarithmic plot versus energy, the EDF is concave at
5 2 low energies and convex at high energies that can be char-
D= (Ag)“vQ) (48) acterized by three temperatures. The concave shape of the

w’+v? EDF at low energies is due to a decrease of the energy dif-
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L Alternating electric and magnetic fields were taken in the
\ form (11) and(12). The profile of the electrostatic potential
0 E was taken ag(r) = ¢o(r/R)*. An infinitely thin sheath with

3 ] a potential drop ¢ = ¢,,— ¢¢ was assumed to exist near the
wall. The wall potentialg,, with respect to the plasma po-
tential at the axigequal to zerpwas found self-consistently
to equalize the number of ionizations and the number of
10 | 4 electrons lost to the wall. The electron distribution function
F ] and the heating rate in a steady state were computed for
different gas pressures and driving frequencies.

The collision processes are described using the DMC
technique[31,32. The DMC method has some advantages
compared to the null-collision Monte Carlo methi@8,34),
which is widely used to calculate electron velocity distribu-
] tion functions(EVDFs). The null-collision method requires

0 5 10 15 20 the electron free-flight distribution as an input to the simula-
total energy & (eV) tion. In contrast, the DMC method does not require knowl-
edge of the free-flight distribution. In fact, the free-flight dis-

FIG. 8. Energy diffusion coefficierd, as a function of the total tribution is an output of the DMC simulation. In addition, the
electron energy for a thin skin laygEq. (50)]. The discharge con- DMC method requires fewer random numbers per time step
ditions are6=1 cm,R=5 cm,B,=2 G, w=8.5x10" s"%, and a  to describe the electron collision processes, as compared to
rectangular potential well fo(r). the null-collision method. The DMC method is a transparent

solution to the Boltzmann equation. The essence of the
fusion coefficient with electron energy. The convex shape irmethod consists in using the set of probability functions
the inelastic energy range>¢* is due to energy loss in
inelastic collisions. Such three-temperature EDFs have re- C _ ’T Neiny! q !
cently been reported for ICPs in arg%izs]. P‘j(v(’)_mnjvozwjo oij(vo.x")simy"dx’, (53

D, [(eV)®s”]

10° | =

IV. PARTICLE-IN-CELL —DYNAMIC MONTE CARLO Pﬁ(v|vo): S(U—=9(vo.&ij . x)), (54)
SIMULATION

aw
The particle-in-cell-dynamic Monte Carlo simulation was P (x|vo) = O'ij(UO:X)SinX/fO aij(vo,x")siny'dx’,
employed to assess the electron-heating efficiency and to cal- (55)
culate the electron distribution function in weakly collisional

regimes. The well-known particle-in-cell methd@9,30 whereP§;, P, andP) correspond to the electron collision

was used to ascribe particle attrlbl_Jtes onto_a grid. The.s'merobability, the conditional probability for an electron to
lations were performed for prescribed profiles of the f'elds'have speed after collision, and the probability for an elec-

tron to be scattered into angpe respectively. The indek
represents the collision procefse., excitation, ionization,
etc) that involves an electron and a partiglethat has a
collision cross sections;j(vg,x), a function of electron
speed before the collisiarn,, and the scattering angje The
heavy species are assumed motionless. & fwnction in Eq.

(54) ensures that momentum and energy are both conserved

10° during the collision. These conservation laws require the
o~ postcollision electron speed to be
E ) 2 2m 28”' vz
10 gd(vo,&ij . x)=|vp 1_E(1—00$’() |
(56)
102 wherem is the mass of the electrom; is the mass of par-

ticle j, ande;; is the energy lost by the electron in the col-
lision of typei with particlej. The free motion of the elec-
trons (i.e., the flight of an electron between collisigns
described by explicitly integrating Newton’'s equations of
motion

P M L M
0 10 20

energy € (eV)

FIG. 9. EDF in argon calculated from E@9) with the energy 1 [to+At
diffusion coefficient(50). The discharge conditions are the same as V(to+At)=v(ty) + EJ F(t)dt, (57)
in Fig. 8. to
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TABLE |. Energy lost in inelastic collisions;, energy carried to the wadl,, (per electron in a unit time and
the ratio of electron escapes to the number of inelastic collisiofts different pressures and driving frequencies

atB=1G.
Pressure
0.3 mtorr 1 mtorr 10 mtorr

Frequency & E, K & &, K & &, K
(MHz) (107 W (107 (%) (1070 W (107HW (%) (100 W (100 W (%)
2 2.2 2.5 2.8 5.7 6.3 29 1.6 0.37 0.35
13.56 1.45 1.54 2.1 2.3 1.9 1.3 6.1 38 0.43
40.7 1.1 1.1 1.8 2.0 1.6 1.1 8.8 7.0 0.7

to+At dependent electron velocity distribution functibgv,r,£) is
r(to+At)=r(ty)+ t u(t)dt, (58 computed on discrete volume elemeitts, Av Av,ArA¢
0 located around the velocity, the radial positiorr, and the
wherev andr are the electron velocity and position vector, Phase angl€. As the simulation advances in time, the ap-
respectivelyt is the current timeAt is a small time incre-  ProPriate 6,,v,,v,,r,) bins of the EVDF are updated.
ment, andF is the force acting on the electrons. The particles were initially given positions and velocities
Ar; algorithm can now be devised based on EG®)— chosen randomly. At the beginning of the simulation the wall
(55) to describe the collisional motion of an electron in aPOtential was set to a relatively high valéexceeding the

plasma. The probability that the electron will not suffer aionization threshold to ensure that the electron ensemble
collision is given by will not decrease with time. Thereafter, the wall potential

was adjusted periodicallievery 10—80 rf cycles depending
on condition$ to maintain a constant, within limits, number
PNe=1-2 7§, (59)  of electrons. The procedure was as follows. After an electron
b move, the new location of the electron was tested to deter-
mine whether the electron had reached the plasma boundary.
Then, if the radial energy of the eIectrmvf/Z was greater
than the potential drop in the sheath ¢, the electron was
lost, otherwise it was specularly reflected. In between wall-
potential adjustements statistics were collected with regard to

whereas the probability for a collision of type(ionization,
excitation, or elasticwith a particlej is given by Eq(53). A
random numbep’ uniformly distributed in the intervdl0,1]
dictates whether the electron suffers no collision

y<pNC (60)  the energy of the electrons striking the plasma boundary. The
resulting vector reflected the electron energy distribution
or suffers a collision of typé with particlej, function (EEDF of the electrons penetrating the sheath. The

vector containing the electron energies was then sorted in

k=1 K ascending order. If the number of ionizations was not equal
PNC+ Y PP<Y<PNC+ > P, (61)  to the number of electrons escapi@ighly likely) the wall

=1 =1 potential was adjusted based on the net electron number

where each value of corresponds to a unique pair, ). change. If there was an electron number deficit the wall po-

Once the collision type has been determined, the energy &Enual was set to a higher value to confine electrons/Ifis

the electron is revised according to the collision characterist '€ electron-number deficit, the new potential was deter-

tics (e.g., elastic and inelas}idoy using Eq(54). The veloc- mined by simply moving\™" notches up(with respect to

ity of the electron is then updated based on the scattering an%pergy the EEDF s_orted vector from the notch closest to the
azimuthal angles, with probability distributions given by Eq. current wall potentlal: If there was an electron number sur-
(55). For the simulation reported in this paper, only electronplus' the wall potential Wasf'?t to a lower value to allow
collisions with neutral atoms were considered and the scaflore €lectrons to escape.Af* is the electron-number sur-
tering was assumed to be isotropic. _plus, tDe new wall potentl_al was determined by simply mov-
The chamber geometry studied here is axisymmetric. AdiNg A~ notches down(with respect to energyfrom the
vantage is taken of this symmetry, so that all quantities aré‘lotch closest to the current wall potential. Naturally, this

functions of only one spatial coordinatthe radial position results in a wall potential that fluctuates with time. If the
of a particle. However, the logic associated with the three- statistics are adequate, the wall potential fluctuations are kept

dimensional particle motion is exaf5]. Cylindrical coor- to a minimum. After the establishment of a dynamic steady

dinates are used to describe the electron motion in velocitytate: the characteristics of the electron ensemble were re-
space. During the PIC-DMC simulation all three electroncord_ed to calculate the EDF and the ionization, loss, and
velocity componentsi.e., v, , vy, andv,) and two spatial eating rates.

coordinates i( and #) are recorded. As electrons are moved
forward in time, their velocity components are calculated at
specific times of the rf cyclgphase angl€= wt(mod27)] Argon-gas pressures in the range 0.1-10 mtorr, excitation
and statistics are accumulated. Numerically, the timefrequencies in the range 2—40 MHz, and magnetic induction

V. RESULTS OF THE DMC SIMULATIONS
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total energy € (eV) FIG. 11. Radial profiles of electron density and “temperature”

for the conditions of Fig. 10. The radial increase of temperature

FIG. 10. EEDF from DMC simulations as a function of total corresponds to the concave EEDF in Fig. 10.

energye for different radial positions, with an argon pressure of 1

mTorr,By=1 G (no skin effect, andw=8.5x 10" cm 3. The elec-  rent density vs phasgat differentr [Fig. 12b)]. The current

trostatic potential isp(r) = ¢o(r/R)*, where =5 V. density is shifted with respect to tig, field by ~ 7/2 as is
expected fon<w. The phase shift does not depend signifi-

fields of 1 o0 2 G were examined for a chamber radius cantly on the radial position. The radial distribution of the rf

R=5 cm. The results of simulations are summarized in Tableurrent does not show significant anomalies, which are typi-

| for the case of a low-density plasma with uniform inductive cal of the anomalous skin effet0,18. Under these condi-

field B=1 G (no skin effect. One observes the following tions, the distance a thermal electron travels during the field

trends. For 13.56 and 40.7 MHz, the energy lost in inelastiperiod,| ~v/w=1.4 cm, is small compared to the character-

collisions &, and the energy carried to the wad], both  istic scale of theE, field inhomogeneity, approximately

increase with increasing pressure. For 2 MHz there is a&qual toR. Significant current diffusion off the skin layer

maximum of&;, and&,, with respect to pressure. For 0.3 and and formation of multiple current layers with a phase shift of

1 mtorr, &, and&,, decrease with an increase of while at  the current density and the field are expected to occur at

10 mtorr &, and &, increase withw. The ratio of electron 1>4[18].

escapes to the number of inelastic collisiandecreases with Figure 13 illustrates the anisotropy degree of the EDF.

increasing pressure, except for the 2-MHz case. The highérhe dashed curve shows the distributige,,r) found by

the heating rate, the longer the EDF “tail,” and a larger partsampling electrons with a given energy=mu2/m, parallel

of energy is lost in collisions compared to energy carried tao the magnetic field regardless of andv,. The solid

the wall. At higher pressures more energy is lost for excitacurve shows the distributiof, (¢, ,r) perpendicular to the

tion than for ionization. field, which was found by collecting electrons with given

Figure 10 shows the calculated EEDF as a function of,2+ 42 irrespective of the value of,. Both distributions

total electron energy for different radial pOSitionS. The am- fZ ande are atr=0.1R. It is seen thafz ande are close to
plltude of time modulation of the EEDF in DMC simulations each other for trapped e|ectronS, wigh< e¢w: but differ
was found to be negligible, as expected éor v*. Namely,  considerably for free electrons, wit>ed,,. One may con-
the EEDFs at different phases of the figldcoincide with  clude that the EDF of trapped electrons is almost isotropic,
each other within the accuracy of the numerical simulationyhile the EDF of free electrons is notably anisotropic. The
The EEDFs shown in Fig. 10 are normalized according to tajl of f, is strongly depleted due to the escape of electrons
with £, >eq,, to the wall as discussed in Sec. lll.
* Figure 14 shows the distributioh, (¢, ,r) at different
L(/)(r)f Ve —ed(r)de=ne(r)/no, (62 radial positions. It is seen that the tail of the distribution
decays with energy more rapidly near the axis, in accord

electron density on the axis. results corroborate the theory presented in earlier sections.
Figure 11 shows the radial profiles of electron density and
temperature for the conditions of Fig. 10. The temperature VI. DISCUSSION

increases towards the wall since the EEDF is concave in the

elastic energy range, which contains most of the electrons Electron heating in a gas discharge is a two-step process

[36]. that includes(a) electron interactions with electromagnetic
Figure 12 shows the radial distribution of the rf currentfields and(b) transfer of the directed energy gained from the

density for different field phases[Fig. 12a)] and the cur- field into the energy of thermal motion. An electron can be
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FIG. 12. Azimuthal rf current density vers@ the radial posi-
tion r for different phases of the rf fieldabels near the curveand
(b) the field phases for differemt The discharge conditions are the
same as in Fig. 10.
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FIG. 13. Electron distributionsf, (¢, ,r) (solid line and

f,(e,,r) (dashed lingatr=0.1R. The discharge conditions are the
same as in Fig. 10.

heating rate is determined by the local value of the electric
field. The energy diffusion coefficient given by EG2) is

the product of a single kick in energye = (e Es¢\)? and the
frequency of collisionsy. When the electron mean free path
exceeds the thickness of the rf sheath or the skin layer, elec-
tron heating becomes nonlocal. The processes of electron
interaction with rf fields and “randomizing collisions” are
now separated in space. When the electron mean free path
exceeds the discharge dimensions “collisions” with plasma
boundaries(potential barriers occur more frequently than
collisions with gas species. The finite dimensions of the
plasma become an important consideration under these con-
ditions since phase correlations of the rf fields could result in
large energy excursions compared to the energy change in
the single interaction with the rf sheath or skin layer. On the

accelerated or decelerated by the electric field depending on
whether it moves along or against the direction of the force.
The result of successive interactions depends upon phase
correlations. Collisions play a twofold role. They change the
direction of the electron motion and th(i$ transfer directed
kinetic energy acquired from the fields into kinetic energy of
random motion andii) randomize the field phase between
succesive interactions. The average energy gain per collision
is the small net difference between large actual gains and
losses. We have demonstrated that phase randomization can
also occur without collisions so that collisionless heating ex-
ists in the ICP. The common feature of different heating
regimes is the statistical nature of the heating. In all cases,
heating represents a random walk of an electron along the
energy axis, which is described in terms of diffusiemergy
diffusion).

Joule heating dominates at high gas pressures when the
fields do not change appreciably over the mean free path of
electrons. The Joule heating is therefore local; proce@ses
and(b) referred to above take place at the same point and thsiti

transverse energy €, (eV)

FIG. 14. Electron distributiori, (¢, ,r) for different radial po-
ons. The discharge conditions are the same as in Fig. 10.



55 ELECTRON KINETICS AND NON-JOULE HEATING IN ... 3421

other hand, under certain conditions, electron dynamics be- 10* B
comes chaotic even without collisions with particles. The g
entire discharge volume participates in the heating process
under these nonlocal conditions even though the heating
fields are clearly localized. The heating regime where elec- 10°
tron interactions with the rf field and collisions are spatially i
separated is referred to as non-Joule heating.

We have further distinguished collisionless and hybrid
heating regimes as belonging to non-Joule heating. The spe-
cific feature of collisionless heating is that it can impart en-
ergy into one direction. However, if the heating process is
slow compared to collisionsas it typically occurs in gas
discharges the EDF should be almost isotropic. 10" |

An analysis of electron heating and formation of the EDF
requires simulations of electron kinetics on a long time scale
compared to the period of the rf field, the bounce time, and
the intercollision time /. The electron energy spectrum is 10°
established on a time scale that is of the order of the energy
relaxation time~ 1/v*. During its lifetime, an average elec- transverse energy €, (eV)
tron undergoes many elastic collisions. Moreover, during its
lifetime, an average electron must generate one electron-ion FIG. 15. Electron distributiorf, (¢, ,r) for a thin skin layer:
pair to maintain a steady state. The fields in a discharge aré=R/5, Bo=2 G, ando=8.5x10" s™*.
established in such a way that during their lifetime slow

electrons are heated up to energged,,. The shape of the
EDF is determined by a balance of electron fluxes along thé37,27,38 and has been recently reported for ICPs at low-

energy axis. Heating produces a duffusive flux of electron£OWer input (hence relatively low plasma density where

from the low-energy region where particles are abundant t&CUlomb interactions are not too strorig8]. Manifestation

the high-energy region where the particle density is low. in-Of the nonlocal electron kinetics is therefore rather common

elastic collisions produce a sink of electrons at high energief0 all low-pressure plasmas regardless of the particular
and a source of electrons at low energies. In the absence grechanism of electron heating and discharge maintenance.

Coulomb interactions, the EDF may substantially differ from
a Maxwellian. VII. CONCLUSION

__The oscillatory magnetic field has a large impact on col- \ye haye studied electron kinetics in a nearly collisionless
lisionless electron heating. The Lorentz force changes theyingrical ICP taking into account the influence of the os-
d|r.ect|or_1 of electron dlffu5|pn in velocity space. In the hy- cillatory magnetic field and the finite dimensions of the
brid regime, however, the influence of tBefield is not S0 y135ma An analysis of single-particle dynamics revealed that
critical. In fact, DMC simulations of low-density ICK0  gjactron motion may become chaotic even without collisions
skin effec} with and without theB field reveal a surprisingly it gas particles. We have distinguished collisionless heat-
small difference in the heating rate at a frequency 13'5§ng from hybrid heating. In the hybrid heating regime, colli-
MHz and argon pressure 1 miorr. With a decreaseofe  gjong with particles are important for randomization of elec-
influence of thes field may become more important. If we o0 motion. We have developed a nonlocal approach to the
assume that the same electric fiéiglis required to sustain a  go|ytion of the electron Boltzmann equation in a free-flight
discharge for different, then a larger rf current ari8 field  yagime when the traditional two-term Legendre expansion is
would be necessary at lowes since Ey<wB. The higher  not valid. We have calculated the energy diffusion coeffi-
B field produces higher “radiation pressure,” preventing cient for hybrid heating regimes and identified resonance
electrons from entering the skin layer of high. Thus, at  phenomena caused by the finite dimensions of the plasma.
lower  the heating rate with account of tiefield should  \ve have used the Dynamic Monte Carlo simulations to cal-
be lower than that without thB field. This was in fact ob-  cylate the EDF in a wide range of discharge conditions. The
served in our simulations. results of the DMC simulations have been compared to theo-
The heating rate and the electron energy spectrum depengtical analysis. Our studies indicate that the EDF of trapped
on the entire profiles of electromagnetic and electrostatig|ectrons with total energy below the wall potential is almost
fields in the discharge. A pronounced skin effect, togethefsotropic and is a function solely of total energywhile the

with weak Coulomb interactions among electrons, results irepE of free electrons withe>eg,, is notably anisotropic
the following phenomenon. Due to the presence of the elecang depends on the radial position.

trostatic potential in the plasma, slow electrons are confined
in the vicinity of the potential maximum near the discharge
center. These electrons cannot reach the skin layer near the
wall and be heated. In the absence of Coulomb interactions, We are grateful to V.A. Godyak, A.J. Lichtenberg, and
the mean energy of these electrons can be very low and laD. Tsendin for reading and commenting on the manuscript.
sharp peak of the EDF can be formed at low ener@se®  This work was supported in part by NSF Grant No. CTS-
Fig. 195. This phemonenon is well known for CCPs 9216023.
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