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Electron kinetics and non-Joule heating in near-collisionless inductively coupled plasmas
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Electron kinetics in an inductively coupled plasma sustained by a coaxial solenoidal coil is studied for the
near-collisionless regime when the electron mean free path is large compared to the tube radius. Emphasis is
placed on the influence of the oscillatory magnetic field induced by the coil current and the finite dimension of
the plasma on electron heating and formation of the electron distribution function~EDF!. A nonlocal approach
to the solution of the Boltzmann equation is developed for the near-collisionless regime when the traditional
two-term Legendre expansion for the EDF is not applicable. Dynamic Monte Carlo~DMC! simulations are
performed to calculate the EDF and electron heating rate in argon in the pressure range 0.3–10 mTorr and
driving frequency range 2–40 MHz, for given distributions of electromagnetic fields. The wall potentialfw in
DMC simulations is found self-consistently with the EDF. Simulation results indicate that the EDF of trapped
electrons with total energy«,efw is almost isotropic and is a function solely of«, while the EDF of
untrapped electrons with«.efw is notably anisotropic and depends on the radial position. These results are
in agreement with theoretical analysis.@S1063-651X~97!05403-2#

PACS number~s!: 52.80.2s, 52.65.2y
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I. INTRODUCTION

High-density plasmas operating at low gas pressu
(,50 mtorr! have recently attracted considerable attent
as primary candidates for the manufacturing of ultra-lar
scale integrated circuits@1#. Inductively coupled plasma
~ICP! sources are particularly attractive because of their r
tively simpler design. Although ICPs have been known a
studied for more than a century@2#, the low-pressure operat
ing regime desirable for modern microelectronics appli
tions is historically unusual and has not been extensiv
explored until recently. Nonlocal electron kinetics is a d
tinctive feature of this regime. Most of the recent kine
studies of low-pressure ICPs@3–5# have been limited to the
collisional regime for which the electron mean free pathl is
small compared to characteristic discharge dimensions. M
ern applications, howerer, call for a plasma that is as free
collisions as possible. Collisionless electron heating a
anomalous skin effect are typical of the near-collisionle
operating regime, for whichl is larger than or comparable t
the discharge dimensions. Interesting kinetic effects
caused by thermal motion of electrons in this regime.

Electron heating is one of the key processes that de
mine the power deposition and spatial uniformity of t
plasma. Heating is a statistical process that transfers the
rected energy acquired from the field into random energy
thermal motion. At high gas pressures, electron collisio
with neutral atoms are responsible for this transfer; co
sional ~Joule! heating predominates. Heating at low pre
sures is due to a combined effect of electron interactions w
the fields, reflections from the plasma boundaries~potential
barriers!, and collisions with gas species. Heating may oc
551063-651X/97/55~3!/3408~15!/$10.00
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even in the absence of collisions if there is a ‘‘phase rando
ization’’ mechanism that is equivalent to electron moment
transfer in collisions with gas species. Such collisionle
~stochastic! electron heating is well known for capacitivel
coupled plasmas~CCPs! where it occurs due to electron in
teractions with oscillating sheath boundaries@6,7#. Between
the two extremes of Joule heating and collisionless heat
there is an important regime of what we call ‘‘hybrid’’ hea
ing. In the hybrid regime, an electron ‘‘forgets’’ the fiel
phase due to collisions, but in contrast to Joule heating,
brid heating is nonlocal: the place of the electron interact
with the field and the place where phase-randomizing co
sions occur are separated in space. Generally, the behavi
electrons in this regime is governed by three frequencies:
frequency of the rf fieldv, the collision frequencyn, and the
bounce frequencyV defined below. Depending on the rela
tive magnitude of these frequencies, different electron
namics and a variety of heating regimes can be dis
guished. Both hybrid and collisionless heating belong to
category of non-Joule heating.

There is one property that fundamentally separates IC
from CCPs. The magnetic field is a crucial factor for IC
since its time variation induces an electric field that acce
ates electrons. Contrary to the electric field in the CCP,
inductive electric field in the ICP is solenoidal, i.e., nonp
tential in nature. The field lines are closed within the plas
and do not form oscillating sheaths as in CCPs. Howev
due to the nonpotential nature of the field, charged partic
change energy in a round-trip through the field region ev
in the absence of collisions@8#. The existence of collisionles
heating in the ICP was suggested by Godyaket al. @9# based
on measurements of external electrical characteristics o
3408 © 1997 The American Physical Society
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55 3409ELECTRON KINETICS AND NON-JOULE HEATING IN . . .
inductive discharge. Turner@10# has drawn similar conclu
sions by calculating the surface impedance of a pla
plasma slab using a particle-in-cell~PIC! Monte Carlo colli-
sions simulation of electrons. He found that the real par
the surface impedance does not vanish with a reductio
gas pressure, indicating, in an indirect way, the existenc
power absorption in the collisionless limit. An analytic
model of electron heating was developed in@11# for a spa-
tially homogeneous plasma with a Maxwellian electron d
tribution function. It was assumed that electrons interact w
inductive electric field within a skin layer and, due to col
sions with plasma species, forget the phase of the field
tween subsequent interactions. The model assumed im
itly that the electron mean free path does not exceed
characteristic dimension of the plasma so that any effect
finite size of the plasma could not be predicted.

In the near-collisionless operating regime, electron ‘‘c
lisions’’ with plasma boundaries~potential barriers! are more
frequent than collisions with gas species. Under these co
tions the finite dimensions of the plasma become an imp
tant consideration. The momentum gained by electrons f
the electromagnetic forces in one place can be transferre
thermal motion to another place where the momentum m
lead or lag the phase of the electric field, depending on
field frequency and transit time of electrons. Phase corr
tions and transit time resonances have a marked influenc
the penetration of electromagnetic fields into a bound
plasma@12#. The influence of finite-size effects on electro
heating was analyzed in@13# for a planar rf discharge. It wa
found that the mechanism of heating depends on the velo
component affected by the electron interaction with elec
magnetic forces. The rf magnetic field in the ICP may hav
major impact on this interaction.

Most papers on ICPs have neglected the influence of
oscillatory magnetic fieldB on electron motion. The possibl
influence of theB field on the anomalous skin effect in in
ductive discharges was mentioned by Demirkhanovet al.
@14# more than 30 years ago. Recently, Cohen and Rogn
@15# have analyzed the influence of theB field on electron
heating in ICPs. They pointed out that the Lorentz force d
to theB field may exceed the electric force in the ICP. T
Lorentz force changes the direction of the velocity kick
electron acquires in the skin layer. As a result, electron h
ing in the near-collisionless regime may be substantially
ferent if the oscillatory magnetic field is accounted for
theoretical analysis or numerial modeling. Gibbons a
Hewett @16# have observed in a PIC simulation that bo
electron velocity components in the plane orthogonal toB
are affected by collisionless heating. Only the azimut
componentvu would have changed if theB field were ne-
glected.

The purpose of the present paper is to analyze elec
dynamics and the mechanism of electron heating in wea
collisional ICPs accounting for the oscillatory magnetic fie
and the finite dimensions of the plasma. The problem
treated analytically and numerically by using~a! integration
of equations of single-particle motion,~b! approximate solu-
tion to the Boltzmann equation, and~c! dynamic Monte
Carlo simulations. We have chosen a simple cylindrical s
tem with prescribed profiles of the fields rather than solv
the Maxwell equations self-consistently with electron kin
ar
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ics. An analysis of the anomalous skin effect in ICPs is b
yond the scope of this paper. It is known that penetration
electromagnetic fields into a bounded discharge plasma
be accompanied by nonmonotonic field profiles, resona
phemonena, etc.@14,17#. A review of classical and recen
works on the anomalous skin effect can be found in R
@18#.

The structure of the paper is as follows. Section II p
sents an analysis of collisionless particle dynamics. The a
symmetry of the problem enables one to rely on the st
constancy of the canonical angular momentum to sepa
the radial and azimuthal motions. In Sec. III we develop
nonlocal approach to the solution of the Boltzmann equat
for electrons in a near-collisionless ICP. Section IV describ
the technique of dynamic Monte Carlo~DMC! simulation.
The results of the DMC simulations in argon are presente
Sec. V for a wide range of discharge conditions. Section
contains a discussion of the results.

II. COLLISIONLESS DYNAMICS
OF CHARGED PARTICLES

Consider an inductively coupled plasma that is produc
in a dielectric tube of radiusR inserted into a long solenoida
coil ~Fig. 1!. The electric and magnetic fields induced by t
rf current in the coil generally have both axial and circum
ferential components@19#. The axial component of the elec
tric field Ez , which is due to the rf potential across the co
terminals, provides capacitive coupling. It can be elimina
or substantially reduced either by a metal screen or by
electrolyte enveroping the discharge vessel@20#. A time-
varying magnetic fieldBz gives rise to a solenoidal electri
field Eu according to Faraday’s law. TheEu field imparts
kinetic energy on electrons and an inductive discharge ca
sustained. Such electrodeless discharges~sometimes called
‘‘ring discharges’’! have a long and interesting history@2#.
However, the low-pressure operating regime has not b
thoroughly studied yet.

We are interested in the case when the mean free pat

FIG. 1. Sketch of an inductive discharge with a coaxial solen
dal coil. A time-varying magnetic fieldBz induces a solenoida
electric fieldEu . An electrostatic potentialf(r ) is generated by the
excess positive space charge. The depth of the potential wellfw

ensures the absence of a net charge flow to the dielectric wall o
chamber.
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3410 55V. I. KOLOBOV, D. P. LYMBEROPOULOS, AND D. J. ECONOMOU
plasma species exceeds the tube radiusR, so that the particle
motion is almost collisionless. Charged particles are acce
ated in the azimuthal direction by the inductive electric fie
Eu ~Fig. 1!. TheBz field produces a Lorentz force acting
the radial direction. When averaged over the rf period, t
force attracts particles towards the axis regardless of the
ticle’s charge. This ‘‘radiation pressure’’ effect is we
known in high-temperature plasmas@21#. In addition to the rf
fields, a substantial static space-charge electric fieldEr is
built up in the discharge. This field accelerates positive io
towards the wall and confines the majority of electrons in
plasma providing equality of charge flow to the dielect
wall of the chamber. The ion motion is a free fall. Electro
can escape the plasma after acquiring enough kinetic en
to overcome the potential barrier near the wall. At stea
state, each electron during its lifetime must produce on
erage an electron-ion pair in ionization events.

A. Equations of motion

It is convenient to represent the space-charge fieldEr by
its scalar potentialf and to use the vector potentialA for
describing the alternating fields generated by the coil curr
By virtue of azimuthal symmetry of the problem, the on
nonvanishing component ofA is the azimuthal componen
Au(r ,t). Magnetic and electric rf fields are recovered fro
the relations](rAu)/]r5rBz and 2]Au /]t5Eu . These
fields do not affect the particle motion along thez axis. Col-
lisionless motion in the plane normal toBz is governed by
the Hamiltonian@21#

H5
pr
2

2m
1

1

2m S pu2qrAu

r D 21qf~r !, ~1!

wherem andq56e are the mass and charge of a partic
r and u are cylindrical coordinates, andpr and pu are ca-
nonical momenta. Since the Hamiltonian~1! is independent
of u, the canonical angular momentumpu is an invariant of
the motion:

pu5mr2u̇1qrAu5const. ~2!

Strict constancy ofpu allows separating the radial and az
muthal motions. The angleu(t) can be found from Eq.~2! if
r (t) andAu are known. On the other hand, the radial moti
is independent ofu:

mṙ5pr , ~3!

ṗr52q
]C

]r
, ~4!

where

C~pu ,r ,t !5
1

2mqS pu2qrAu

r D 21f~r !5
mvu

2

2q
1f~r !

~5!

is an effective potential. It is useful to separateC into a
time-independent part
r-

s
r-

s
e

gy
y
v-

t.

,

C0~pu ,r !5
pu
2

2mqr2
1
q^Au

2&
2m

1f~r ! ~6!

and an alternating part

C152
puAu

mr
2

q

2m
~Au

22^Au
2&!. ~7!

Here ^Au
2& denotes the time-averaged value ofAu

2(r ,t) ~the
time-average ofAu is zero!. The first term on the right-hand
side of Eq.~6! is due to the centrifugal force, i.e., an effe
tive force in ther direction resulting from particle motion in
the u direction. The second term on the right-hand side
Eq. ~6! is the pondermotive or Miller force that describe
‘‘radiation pressure’’ @21#. Radiation pressure forces bot
electrons and ions from regions of high rf field into regio
of weaker field, i.e., towards the tube axis. Since the Mil
force is inversely proportional to particle mass, its influen
on ions is typically negligible compared to the electrosta
force, which accelerates ions towards the wall.

For electrons, the alternating part of the potentialC1 may
be considered as a small perturbation at relatively high
quencies. In the high-frequency limit, the perpendicular
ergy of electrons

«'5mṙ2/21eC0~pu ,r ! ~8!

is a constant of the motion and there is no electron heat
The potentialC0 confines the majority of electrons in th
plasma. Settingv r50 determines, for each set of«' and
pu , the coordinates of two turning pointsrmin andrmax ~Fig.
2!. The period of bounce oscillations

T~«' ,pu!52E
rmin

rmax dr

A2@«'2eC0~pu ,r !#/m
~9!

and the bounce frequencyV(«' ,pu)52p/T are functions of
electron energy«' and angular momentumpu .

FIG. 2. Schematic of the effective potentialC0(r ) @Eq. ~6!# for
pu.0 and forpu50. rmin and rmax indicate coordinates of turning
points for an electron with energy«' .
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B. Low-density plasmas

Electromagnetic fields in ICPs are spatially inhomog
neous even in the absence of a skin effect. To distinqu
finite-size effects and the field shielding by the plasma, le
consider the collisionless skin depthd5c/vp , wherevp is
the electron plasma frequency andc is the speed of light. For
ne51010 cm23, d55 cm, which is equal to the radius of th
tubeR considered in this paper. At low plasma density, wh
d.R, the skin effect is negligible.~Simple estimates indicat
that the ambipolar diffusion regime is established long
fore the field shielding begins.! In any case, however,Eu
must vanish on the axis due to azimuthal symmetry of
problem. In the absence of skin effect, the rf current in
coil with angular frequencyv produces electromagneti
fields with the vector potential

Au5A0~r !sinvt5~B0r /2!sinvt, ~10!

which corresponds to a spatially uniform magnetic field

Bz5B0sinvt ~11!

and linearly varying electric field

Eu52~E0r /R!cosvt ~12!

of amplitudeE05B0vR/2. The ratio of the electric force
eEu to the magnetic~Lorentz! forceevB is vr /2v. This ratio
decreases with a decrease ofv and can be rather small at low
frequencies even atr5R. The magnetic field can therefor
have considerable impact on electron dynamics.

Consider collisionless electron motion under the influen
of the rf fields ~11! and ~12! and an electrostatic field
Er52df/dr. A similar problem was treated by Weibe
@22#, who analyzed stable orbits of charged particles in el
tromagnetic fields of a circular waveguide@whenA0(r ) is a
Bessel function# for f50. In our case, the first term ofC1
gives no contribution to the force and the equations of m
tion ~3!–~5! are reduced to

r̈5
pu
2

m2r 3
2S vL

2 D 2rsin2vt2 eEr
m

, ~13!

wherevL5eB0 /m is the Larmor frequency. For the particu
larly simple caseEr(r )5E0r /R, Eq. ~13! is equivalent to a
set of two completely decoupled equations forx5rcosu and
y5rsinu, both of the Mathieu type

$ẍ,ÿ%52V2S 12
vL
2

8V2cos2vt D $x,y%. ~14!

Equation ~14! describes a linear oscillator under the infl
ence of a harmonic external force of frequency 2v. The
frequency of natural oscillationsV5(vL

2/81eE0 /mR)1/2 is
independent of energy. A parametric resonance is know
occur when the frequency of the force (2v) is close to
kV, wherek is an integer. ForV5vL /A8 ~no electrostatic
field!, the basic resonance (k51) takes place in the interva
@22#

1.15,~vL/2v!,1.89. ~15!
-
h
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This resonance may have a major impact on gas breakd
in inductive discharges.

The resonance between bounce oscillations and rf fie
can rapidly accelerate electrons. The amplitude of elect
oscillations increases with time~Fig. 3!. Under breakdown
conditions (f50), electrons would escape to the wall whe
the amplitude of their bounce oscillations equals the tu
radius. In a discharge, the potentialf(r ) is nonparabolic in
the vicinity of the wall due to the presence of a space-cha
sheath. Equation~14! is no longer valid at that location. Due
to electron reflection from the sheath, the bounce freque
V becomes a function of electron energy. That detunes
frequency, generally leading to phase oscillations with
spect to the field~see Fig. 3!. The variations of the bounce
amplitudes shown in Fig. 3 correspond to variations of ele
tron energy with time. Under the conditions of Fig. 3, th
limited energy excursions correspond to regular electron m
tion. Under certain conditions, due to the nonlinearity of o
cillations @the dependence ofV on «' in Eq.~9!#, the motion
of electrons may become chaotic. That corresponds to
onset of collisionless heating. We shall illustrate the origin
the chaos and the appearance of collisionless heating for
more practical case of a thin skin layer, which is analyzed
the next subsection.

C. High-density plasmas

For high-density plasmas withd!R, the rf fields are lo-
calized within a thin skin layer near the wall. Electroma
netic forces act impulsively rather than continuously
bouncing electrons. Sinced!R, one can neglect the time
t52d/v r electrons spend in the skin layer compared to t
bounce timetn112tn between two sequential interactions. I
the presence of an electrostatic potential in the plasma, o
sufficiently energetic electrons are capable of overcom
the potential barrier and reach the skin layer. For these e
trons one can neglect the influence of the electrostatic po
tial for calculation of the bounce period from Eq.~9!:

FIG. 3. Radial electron position as a function of time for res
nance conditionsB51 G, v573106 s21 ~1.1 MHz!, and
vL/2v51.27, pu50.1mvR2, R55 cm. A rectangular potential
well was assumed. The time modulation of the amplitude of bou
oscillations corresponds to phase oscillations of the electron en
with respect to the electric field.
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T5
R

«'

A2m«'2S pu

R D 2. ~16!

Due to the two-dimensional nature of the problem, the per
T is a function of two variablespu and «' . The periodT
vanishes for particles withpr50 moving along a circle of
radius r'R. Another limiting case, namely,pu50, re-
sembles a planar geometry. ForpuÞ0, the periodT has a
maximum with respect to«' . Due to strict constancy of the
canonical momentumpu , a change in«' in the skin layer
corresponds to a change in radial electron velocity. Thus
the limiting cased!R, electron interactions with the rf field
affect only the radial part of electron energy.

Let us construct a mapping relating the values of variab
between sequential interactions. Letjn designate the phas
of the field (jn5vtn) at the moment of thenth electron
reflection from the plasma boundary atr5R. The phases of
the field between two sequential interactions are given b

jn115jn1vT~«n11!. ~17!

Integrating the equations of motion in the skin layer yield

«n115«n1Q~jn!, ~18!

where«n115«(tn112t) and«n5«(tn2t) are radical elec-
tron energies before then11 andn kicks, respectively. The
energy change in the skin layerQ is proportional to the
power ~the product of forcee]C1 /]r and electron velocity
ṙ ) evaluated along a trajectory@23#

Q5eE
tn2t

tn1t

ṙ
]C1„r ~ t !,t…

]r
dt. ~19!

The difference equations~17! and ~18! are equivalent to the
equations of motions~3! and~4!. The value of the derivative
djn11 /djn defines the degree of phase correlations. The
equality

U djn11

djn
21U>1 ~20!

serves as a rough criterion of local phase instability@23#. If
Eq. ~20! holds true, electron trajectories become chaotic
spite of the fact that the equations of motion contain
random forces. In some sense, the chaotic component o
motion remains weak compared to the regular componen
manifests itself on larger spatial and time scales in comp
son to the regular bounce motion. Chaotic dynamics co
sponds to ‘‘slow’’ electron diffusion along the ‘‘energ
axis’’ from regions in phase space where particles are ab
dant to regions where particle density is low. Since the e
tron distribution function~EDF! usually decreases with en
ergy, such a diffusion corresponds to collisionless elect
heating.

Using Eqs.~20! and~16! and taking into account only th
linear term ofC1 in Eq. ~7!, one obtains from Eq.~20!

vTD«

«

u~pu /R!22m«u
2m«2~pu /R!2

>1, ~21!
d

in

s

-

n
o
he
it
i-
e-

n-
c-

n

whereD« is the magnitude of the energy kick. The phase
the rf field appears to be random for electrons if sm
changes of electron energy in the skin layer result in con
erable changes in phase. In the vicinity of the maximum
T(«), whereT is weakly energy dependent, small changes
T(«) also result in a small change in the phase over
period of bounce oscillations. The heating becomes sec
order with respect toD«. On the contrary, forT→0, where
the derivativedT/d« tends to infinity, even small changes
energy may result in considerable changes in phase; the
nominator of Eq.~21! becomes zero. Far from these pec
liarities, which are specific to cylindrical geometry, inequa
ity ~21! requires thatvTD«/«.1. This condition, well
known for a planar case@24#, states that for small-amplitud
kicksD«, the driving frequencyv must be sufficiently large
so that the field could change many times during the bou
period. For smallpu ~as in the planar case!, the bounce pe-
riod T decreases with an increase in energy and the mo
of energetic electrons is more regular. Equation~21! imposes
restrictions on the maximum energy electrons can achieve
the collisionless heating mechanism.

To proceed further, we have to calculate the energy k
per single pass through the skin layer. For the sake of s
plicity, let us assume, as in@11,15#, an exponential decay o
the fields within the skin layer:Au5A0exp@2(R2r)/d#. For
Q!«, integrating along unperturbed trajectoriesṙ56v r t,
we obtain@11,15#

Q~pu ,pr ,j!5vLdsinj~2pu /R1mvLdcosj!
vt

11~vt!2
,

~22!

wherevL5eB0 /m is the Larmor frequency in the magnet
field B05A0 /d. Two points are worth mentioning regardin
Eq. ~22!. ~a! Evidently, the maximal energy can be acquir
if the electric field remains in the same direction during t
entire electron transit through the skin layer. However, sin
the amplitude of the induced electric field (Eu}v) decreases
with v, the optimal conditions for the energy gain take pla
at vt51 whenQ reaches a maximum with respect ofvt.
~b! The term ofQ linear with respect tovLd vanishes for
pu50 due to symmetry of the problem.

The important difference of our analysis from@11#, where
the rf magnetic field was neglected, is in the direction of t
velocity kick. Accounting for the magnetic field results in
velocity kick normal to the plasma boundary, similar to th
taking place in a capacitively coupled rf discharge@15#. The
direction of the velocity kick greatly influences the dynami
of bouncing electrons; for instance, in the planar case, ki
parallel to the boundary~as in @11#! imply the absence of
collisionless heating@13#. Contrary to the capacitively
coupled plasma, electrons entering the skin layer with z
azimuthal velocity experience no energy kick in the line
approximation: the first term in Eq.~22! vanishes for
pu50. In the linear approximation, the mapping~17! and
~18! can be written in the form

En115En1
4vL

v
Psinjn

AEn
En11

, ~23!
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jn115jn1
2R

d

AEn11

En111P2 1
2vL

v
Pcosjn

En1121

~En1111!2AEn11

,

~24!

where P5pu /mvdR and E52«/m(vd)22P2 are dimen-
sionless momentum and energy, respectively. Since
transformation fromn to n11 is generated by Hamilton’s
equations, the mapping~23! and ~24! must be area preserv-
ing. The last term in Eq.~24! accounts for the first-order
change in phase to ensure area preservation@24#. In variables
E andP, the boundary of chaos defined by Eq.~21! becomes

4vLR

vd

PAEuP22Eu
~E11!~E1P2!2

.1. ~25!

This boundary is shown in Fig. 4 for typical discharge con
ditions, v58.53107 s21 ~13.56 MHz!, vL51.73107 s21

(B051 G!, d51 cm, andR55 cm. The dashed line corre-
sponds to the maximum ofT(E), where heating becomes
second order with respect toD«. Since collisionless heating
affects only the radial part of electron energy, electrons c
be heated up to radial energiesm(vd)2/2;2 eV for the
conditions of Fig. 4. An increase ofvL or a decrease ofv
leads to an increase of these energies.

III. BOLTZMANN EQUATION FOR ELECTRONS

The electron distribution function in a rf discharge is
function of time, three electron velocities, and~at least one!
spatial coordinate. In general, the solution of the Boltzma
equation for the EDF is a formidable numerical task. For th
reason, the development of reliable approximations is va
able. The traditional two-term Legendre expansion of th
EDF is valid only for the collisional regimel!R @25#. How-
ever, due to the large difference between momentum a
energy relaxation rates of electrons, a separation of the E

FIG. 4. Regions of regular~above! and chaotic~below solid
lines! electron dynamics for the case of a thin skin layer. The so
lines indicate the maximal values of the radial electron energyE
that can be reached in collisionless heating for a particular value
the angular momentumP.
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d
F

into two parts can be performed for the free-flight regime
well @26,27#. In rf discharges, one can separate rapidly a
slowly varying parts of the EDF. For trapped electrons,
slowly varying part turns out to be almost isotropic. Furthe
more, by performing an appropriate spatial averaging,
kinetic equation for the isotropic part is reduced to an or
nary differential equation. Thus, for the majority of ele
trons, the principal part of the EDF turns out to be a functi
of a sole variable, the total electron energy.

A. Nonlocal approach

It is convenient to use invariants of the particle motion
independent variables in the Boltzmann equation. Taking
vantage of the azimuthal symmetry of our problem and us
the canonical momentumpu as an independent variable, th
Boltzmann equation for electrons can be written in the fo
@25#

] f

]t
1v r

] f

]r
1 ṗr

] f

]pr
5S, ~26!

whereS is a collision operator andṗr is given by Eq.~4!.
The electron distribution functionf in Eq. ~26! is a function
of pr ,pu ,pz ,r , andt. Since there is no variation withz and
u, these coordinates have been omitted. Also, the te
ṗu] f /]pu vanishes becauseṗu50 @see Eq.~2!#. According
to Eq.~26!, electron motion alongz is coupled to the motion
in the (x,y) plane solely due to collisions.

The ICP is a weakly ionized plasma. For the majority
electrons, the frequency of electron collisions with neut
atoms exceeds the frequency of Coulomb interactions am
electrons~see Fig. 5!. In the pressure range of interest, th
bounce frequencyV exceeds the momentum transfer col
sion frequencyn. In argon~as in many other gases! the total
frequency of inelastic collisionsn* ~which includes excita-
tion and ionization of atoms! is small compared ton in the

d

of

FIG. 5. Characteristic frequencies for an argon discharge
electrons with an energy of 5 eV, a plasma density of 1011 cm23,
and the tube radiusR55 cm: angular frequencyv, bounce fre-
quencyV, transport collision frequencyn, and the frequency of
Coulomb interaction among electronsnee.
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energy range of interest. The difference betweenn and n*
~i.e., the difference between momentum and energy re
ation rates! can be used to simplify the Boltzmann equatio

Let us rewrite Eq.~26! using the transverse energy«'

@Eq. ~8!# as an independent variable

] f

]t
1v r S ] f

]r D
«'

2e
]C1

]r
v r

] f

]«'

52n~ f2F0!1S* .

~27!

Now, the EDF is a function of«' ,pu ,pz ,r , andt, while the
radial electron velocityv r5A2(«'2eC0)/m is a function
of independent variables. The first term on the right-ha
side of Eq.~27! describes momentum transfer in collisio
with gas species. The scattering is assumed to be isotr
andF0 designates the isotropic part of the EDF

F0~«!5
1

4pE f dVv , ~28!

which is assumed time independent for reasons discu
below. Integration in Eq.~28! is performed over angles in
velocity space and«5«'1pz

2/2m denotes the total energy
The termS* on the right-hand side of Eq.~27! describes
inelastic processes such as excitation and ionization of
oms, excitation of molecular vibrations and rotations, ene
loss in elastic collisions with atoms, and Coulomb intera
tions among electrons. These processes can be divided
quasielastic and substantially inelastic. Quasielastic p
cesses, such as excitation of molecular vibrations and r
tions, energy loss in elastic collisions with atoms, and C
lomb interactions among electrons, can be written in
Fokker-Planck form@25#. Substantially inelastic processe
correspond to removing high-energy electrons and repla
them by low-energy ones. For instance, excitation of a sin
atomic level with energy«* is described by

S1*52n1* ~«! f1A«8

«
n1* ~«8! f ~«8!. ~29!

In this process a high-energy electron loses an energy q
tum «* and reappears at energy«85«2«* . Let n* desig-
nate the frequency of all substantially inelastic processes
cluding ionization. For most gasesn@n* in the considered
energy range. Also, for plasma densities typical to IC
n@nee for the majority of electrons~see Fig. 5!. Thus the
inelastic collision termS* in Eq. ~27! is usually small com-
pared ton f .

The EDF may be expressed as the sum of a rapidly v
ing part f 1 and a slowly varying partf 0. The latter is almost
time independent forv@n* @25#. The equation forf 1 is

] f 1
]t

1v r S ] f 1
]r D

«'

2e
]C1

]r
v r

] f 0
]«'

52n f 1 . ~30!

The equation forf 0(«' ,pu ,pz ,r ) is

v r S ] f 0
]r D

«'

2 K e]C1

]r
v r

] f 1
]«'

L 52n~ f 02F0!1S* ,

~31!
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where the angular brackets designate time averaging ov
rf period

^ f &5 f 05
v

2pE0
2p/v

f dt. ~32!

For the majority of electrons, the difference,f 02F0, is ex-
pected to be rather small, so that the energy relaxation t
S* in Eq. ~31! may exceedn( f 02F0).

The first two terms of Eq.~30! are recognized as the tota
time derivative in configuration space. Thus the solution
Eq. ~30! can be found by integration along electron trajec
ries @12#

f 15eE
0

`

ds e2nsv r~ t2s!
]C1

]r
@r ~ t2s!,t2s!]

] f 0
]«'

.

~33!

Having expressed the alternating partf 1 in terms of the main
part f 0, we may substitute Eq.~33! into Eq.~31! to obtain an
equation forf 0

v r S ] f 0
]r D

«'

2v r
]

]«'

J«~«' ,r ,pu!52n~ f 02F0!1S* ,

~34!

where

J«5e2E
0

`

ds e2nsK ]C1

]r
v r~ t2s!

]C1

]r
@r ~ t2s!,t2s#L ] f 0

]«'

~35!

is the electron flux along the«' axis caused by electron
heating.

Consider trapped electrons with«',efw . The bounce
motion of these electrons@described by the first term of Eq
~34!# occurs much more rapidly than their displaceme
along the energy axis; the first term in Eq.~34! dominates.
This term vanishes iff 0 does not depend explicitly onr , i.e.,
if f 05F(«' ,pu ,pz). An equation forF can be obtained by
dividing Eq. ~34! by v r and integrating over the discharg
cross section accessible to electrons with energy«' . This
procedure of spatial averaging results in@26#

]

]«'

D~«' ,pu!
]F

]«'

5 n̄~F2F0!2S̄* , ~36!

where

D5e2VE
rmin

rmaxdr

v r
E
0

`

ds e2ns

3 K ]C1

]r
v r~ t2s!

]C1

]r
@r ~ t2s!,t2s#L ~37!

is the energy diffusion coefficient andV is the bounce fre-
quency for an electron with energy«' and canonical mo-
mentumpu . The overbar denotes spatial averaging:

ḡ5VE
rmin

rmaxg

v r
dr. ~38!
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Equation~36! describes a complex process of energy
distribution between three degrees of freedom. Heating p
duces an electron flux along the«' axis towards high ener
gies and thus causes a departure of the EDF from
isotropic one. Elastic collisions tend to restore the isotropy
the EDF. They act on a time scale that is long compared
the bounce time, but short compared to the electron lifeti
resulting in an almost isotropic distribution of trapped ele
trons. Whenn@n* holds true, Eq.~36! can be simplified
even further. The EDF can be written as the sum of an
tropic part F0 and a small anisotropic additionF1!F0:
F(«' ,pu ,pz)5F0(«)1F1(«' ,pu ,pz). The equation for the
isotropic part has the form

d

d«
D«~«!

dF0
d«

52S̄* , ~39!

where D«(«) is the energy diffusion coefficient average
over pu andpz :

D«~«!5
1

2m«E E
pu
2
1pz

2
,2m«

D~«' ,pu!dpudpz . ~40!

The energy diffusion coefficientD« contains all information
about electron heating and determines microscopic chara
istics of the electron ensemble such as the principal par
the EDF,F0, and macroscopic quantities such as the rate
power deposition into the plasma.

Thus, similar to the collisional casel,d @3,4#, electrons
are separated into two groups with respect to total ene
trapped electrons with«,efw and ‘‘free’’ electrons with
«.efw . For trapped electrons, the kinetic equation is
duced to an ordinary differential equation, Eq.~39!. For free
electrons, the more general equation, Eq.~34!, should be
used. These electrons are capable of escaping the disch
and their EDF depends explicitly on radial position. Mor
over, atl.R, the EDF of free electrons becomes notab
anisotropic. While in the collisional casel,R considerable
anisotropy of the EDF appears only at a distance appr
mately equal tol near the wall~due to the absence of elec
tron flux from the wall!, in the free-flight case the EDF an
isotropy manifests itself everywhere. Since only tho
electrons for whichv r(«' ,pu ,R).0 can escape to the wal
the velocity of an escaping electron must satisfy the con
tion

«'2
pu

mR2
.efw . ~41!

Thus electrons withpu'0 that move away from the axis ca
escape if«'.efw . Since these electrons are present only
the vicinity of the axis, the EDF atr'0 decreases rapidly
with energy starting at«''efw . For largerr , such a de-
crease of the EDF begins at higher«' . Consequently, the
EDF at«'.ecw becomes a complicated function of radi
position and angles. While free electrons are primarily
sponsible for the dc component of the electron current
give considerable contribution to the energy balance at
pressures, their contribution to average quantities such
electron density, temperature, and power deposition is
general, negligible.
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B. Energy diffusion coefficient for a thin skin layer

The induced electric field in a cylindrical ICP is spatial
inhomogeneous even in the absence of the skin effect~see
Fig. 1!. The magnetic field becomes spatially inhomog
neous only due to the field shielding by the plasma. F
d,R, we consider only the linear term ofC1 in Eq. ~7!,
which gives the principal contribution to the electromagne
force for electrons with nonzeropu . In the limiting case of a
thin skin layerd!R, retaining only the linear term ofQ in
Eq. ~22!, integration of Eq.~33! can be carried out to give th
oscillating part of the EDF in the form

f 1~«' ,pu ,t !5D«
] f 0
]«'

(
n50

`

e2ntnsinv~ t2tn!. ~42!

HereD« is the energy kick in one pass through the skin lay
andtn designates the time of thenth electron interaction with
the skin layer. Consider the hybrid regime when chaotizat
of electron motion is due to collisions@13#. For this regime,
using the approximationtn'2pn/V, we find

f 15
D«

2

] f 0
]«'

$F1~x,y!sinvt2F2~x,y!cosvt%, ~43!

where x52pv/V, y52pn/V, and functionsF1 and F2
are defined as

F15
expy2cosx

coshy2cosx
, ~44!

F25
sinx

coshy2cosx
. ~45!

The functionf 1 oscillates with frequencyv and with a phase
shift a5arctan(F2 /F1) with respect to the oscillations of th
force ]C1 /]r}sinvt. The phase shifta is small at high
pressures, whenn@V. At low pressures, in the near
collisionless regime (n!V) the phase shifta is a periodic
function ofx with a period 2p ~see Fig. 6!. Under resonance
conditions, the amplitude off 1 may be quite large due to

FIG. 6. Phase shifta between oscillations of the EDFf 1 and
oscillations of the accelerating force@Eq. ~43!#.
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3416 55V. I. KOLOBOV, D. P. LYMBEROPOULOS, AND D. J. ECONOMOU
strong correlations of the field phases and large energy
cursion compared to energy kickD« per single pass throug
the skin layer.

The second term off 1, shifted in phase byp/2 with re-
spect to the force, produces no work when averaged over
period. Only the first term contributes to the power abso
tion in the plasma. From Eqs.~37! and ~43!, the energy dif-
fusion coefficient for the hybrid heating regime is

D5
1

2
~D«!2VF1~x,y!. ~46!

In limiting cases, this energy diffusion coefficient was o
tained in Ref.@13# for a planar geometry. The energy diffu
sion coefficient is a product of a single energy kick in t
skin layer, the bounce frequencyV, and the functionF1,
which describes the phase correlations between succe
kicks. At y!1, function F1(x,y) exhibits resonances a
x52pk, wherek is an integer~see Fig. 7!. The energy dif-
fusion coefficient

D5
~D«!2

2
VF11

1

p

nV

n21~2V/p!2@12cos~2pv/V!#G
~47!

is anomalously large for resonant particles withv'kV. For
n→0, D tends to ad function. Far from resonances, th
second term in the set of large square brackets of Eq.~47! is
small. At low excitation frequenciesv2!2nV, the energy
diffusion coefficient~46! also reaches a maximum due
phase correlations of the rf field with respect to electron m
tion

D5
~D«!2nV2

v21n2
. ~48!

FIG. 7. FunctionF1 @Eq. ~43!# that describes phase correlatio
for hybrid heating regime. Strong resonances between bounce
cillations and rf fields are observed in the near-collisonless reg
(n!V) at v5kV, wherek50, 1, 2, . . . .
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In the case of frequent collisionsn@V, the energy diffusion
coefficient~46! is particularly simple

D5~D«!2V. ~49!

It is interesting to note that the collision frequencyn does not
appear explicitly in Eq.~49! even though collisions are re
sponsible for phase randomization.

For collisionless heating, the energy diffusion coefficie
can be obtained using a random-phase approximation@13#.
The resulting expression forD coincides with Eq.~49!. Al-
though the mechanism of phase randomization is differen
the collisionless and hybrid regimes, the heating rate
scribed by Eq.~49! turns out to be the same. This is due
the fact that, for the considered hybrid regime, only electro
at a distancel from the skin layer participate in the heatin
process.

The energy diffusion coefficients given by Eqs.~46!–~49!
are valid for both planar and cylindrical coordinates. To c
culate the EDF in the cylindrical case, we have to avera
D over angles according to Eq.~40!. Introducing cylindrical
coordinatesP andq in the (pu ,pz) plane, we obtain, for the
particularly simple case~49!,

D«5
~vLd!2

R

m~vd!2

2
A2m«YFm~vd!2

2« G , ~50!

whereY(x) is defined as

Y~x!5
1

2E0
2p

dqE
0

1

dP
P3cos2q~12P2sin2q!A12P2

~12P21x!2

5
1

16S 223115x

3
2

~2326x15x2!arctan1/Ax
Ax D .

~51!

Expression~50! differs considerably from the energy diffu
sion coefficient

D«5
~eEl!2n3

6~n21v2!
, ~52!

which describes Joule heating@3#. The principal difference is
that Joule heating is local@the energy diffusion coefficien
~52! is a function of the local value of the electric field#,
while non-Joule heating is nonlocal. The energy diffusi
coefficient~50! is determined by the entire profile of the
fields in the skin layer. Also, contrary to Eq.~52!, D« in Eq.
~50! does not depend explicitly on gas pressure: the collis
frequency does not appear in Eq.~50!. The energy diffusion
coefficient ~50! exhibits a maximum as a function of th
productvd and increases monotonically as a function of«
~see Fig. 8!.

The EDF calculated from Eq.~39! with D« given by Eq.
~50! is shown in Fig. 9. The EDF is found with neglect of th
electrostatic potential in the plasma~rectangular potentia
well! and no Coulomb interactions among electrons. In
semilogarithmic plot versus energy, the EDF is concave
low energies and convex at high energies that can be c
acterized by three temperatures. The concave shape o
EDF at low energies is due to a decrease of the energy

os-
e
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55 3417ELECTRON KINETICS AND NON-JOULE HEATING IN . . .
fusion coefficient with electron energy. The convex shape
the inelastic energy range«.«* is due to energy loss in
inelastic collisions. Such three-temperature EDFs have
cently been reported for ICPs in argon@28#.

IV. PARTICLE-IN-CELL –DYNAMIC MONTE CARLO
SIMULATION

The particle-in-cell–dynamic Monte Carlo simulation w
employed to assess the electron-heating efficiency and to
culate the electron distribution function in weakly collision
regimes. The well-known particle-in-cell method@29,30#
was used to ascribe particle attributes onto a grid. The si
lations were performed for prescribed profiles of the fiel

FIG. 8. Energy diffusion coefficientD« as a function of the tota
electron energy for a thin skin layer@Eq. ~50!#. The discharge con-
ditions ared51 cm,R55 cm,B052 G,v58.53107 s21, and a
rectangular potential well forf(r ).

FIG. 9. EDF in argon calculated from Eq.~39! with the energy
diffusion coefficient~50!. The discharge conditions are the same
in Fig. 8.
n

e-

al-
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Alternating electric and magnetic fields were taken in t
form ~11! and ~12!. The profile of the electrostatic potentia
was taken asf(r )5f0(r /R)

4. An infinitely thin sheath with
a potential dropDf5fw2f0 was assumed to exist near th
wall. The wall potentialfw with respect to the plasma po
tential at the axis~equal to zero! was found self-consistently
to equalize the number of ionizations and the number
electrons lost to the wall. The electron distribution functi
and the heating rate in a steady state were computed
different gas pressures and driving frequencies.

The collision processes are described using the D
technique@31,32#. The DMC method has some advantag
compared to the null-collision Monte Carlo method@33,34#,
which is widely used to calculate electron velocity distrib
tion functions~EVDFs!. The null-collision method requires
the electron free-flight distribution as an input to the simu
tion. In contrast, the DMC method does not require know
edge of the free-flight distribution. In fact, the free-flight di
tribution is an output of the DMC simulation. In addition, th
DMC method requires fewer random numbers per time s
to describe the electron collision processes, as compare
the null-collision method. The DMC method is a transpare
solution to the Boltzmann equation. The essence of
method consists in using the set of probability functions

Pi jC~v0!5Dtnjv02pE
0

p

s i j ~v0 ,x8!sinx8dx8, ~53!

Pi jv ~vuv0!5d„u2g~v0 ,« i j ,x!…, ~54!

Pi jx ~xuv0!5s i j ~v0 ,x!sinxYE
0

p

s i j ~v0 ,x8!sinx8dx8,

~55!

wherePi jC , Pi jv , andPi jx correspond to the electron collisio
probability, the conditional probability for an electron t
have speedv after collision, and the probability for an elec
tron to be scattered into anglex, respectively. The indexi
represents the collision process~i.e., excitation, ionization,
etc.! that involves an electron and a particlej that has a
collision cross sections i j (v0 ,x), a function of electron
speed before the collisionv0, and the scattering anglex. The
heavy species are assumed motionless. Thed function in Eq.
~54! ensures that momentum and energy are both conse
during the collision. These conservation laws require
postcollision electron speed to be

g~v0 ,« i j ,x!5Fv02S 12
2m

mj
~12cosx! D2

2« i j
m G1/2,

~56!

wherem is the mass of the electron,mj is the mass of par-
ticle j , and« i j is the energy lost by the electron in the co
lision of type i with particle j . The free motion of the elec
trons ~i.e., the flight of an electron between collisions! is
described by explicitly integrating Newton’s equations
motion

v~ t01Dt !5v~ t0!1
1

mEt0
t01Dt

F~ t !dt, ~57!s
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TABLE I. Energy lost in inelastic collisionsEin energy carried to the wallEw ~per electron in a unit time!, and
the ratio of electron escapes to the number of inelastic collisionsk for different pressures and driving frequenci
at B51 G.
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r ~ t01Dt !5r ~ t0!1E
t0

t01Dt

u~ t !dt, ~58!

wherev and r are the electron velocity and position vecto
respectively,t is the current time,Dt is a small time incre-
ment, andF is the force acting on the electrons.

An algorithm can now be devised based on Eqs.~53!–
~55! to describe the collisional motion of an electron in
plasma. The probability that the electron will not suffer
collision is given by

PNC512(
i , j
Pi jC , ~59!

whereas the probability for a collision of typei ~ionization,
excitation, or elastic! with a particlej is given by Eq.~53!. A
random numberY uniformly distributed in the interval@0,1#
dictates whether the electron suffers no collision

Y<PNC ~60!

or suffers a collision of typei with particle j ,

PNC1 (
l51

k21

PlC<Y<PNC1(
l51

k

PlC , ~61!

where each value ofl corresponds to a unique pair (i , j ).
Once the collision type has been determined, the energ
the electron is revised according to the collision characte
tics ~e.g., elastic and inelastic!, by using Eq.~54!. The veloc-
ity of the electron is then updated based on the scattering
azimuthal angles, with probability distributions given by E
~55!. For the simulation reported in this paper, only electr
collisions with neutral atoms were considered and the s
tering was assumed to be isotropic.

The chamber geometry studied here is axisymmetric.
vantage is taken of this symmetry, so that all quantities
functions of only one spatial coordinate~the radial position
of a particle!. However, the logic associated with the thre
dimensional particle motion is exact@35#. Cylindrical coor-
dinates are used to describe the electron motion in velo
space. During the PIC-DMC simulation all three electr
velocity components~i.e., v r , vu , andvz) and two spatial
coordinates (r andu) are recorded. As electrons are mov
forward in time, their velocity components are calculated
specific times of the rf cycle@phase anglej5vt(mod2p)#
and statistics are accumulated. Numerically, the tim
of
s-

nd
.

t-

-
re

-

ty

t

-

dependent electron velocity distribution functionf (v,r ,j) is
computed on discrete volume elementsDv rDvuDvzDrDj
located around the velocityv, the radial positionr , and the
phase anglej. As the simulation advances in time, the a
propriate (v r ,vu ,vz ,r ,j) bins of the EVDF are updated.

The particles were initially given positions and velociti
chosen randomly. At the beginning of the simulation the w
potential was set to a relatively high value~exceeding the
ionization threshold! to ensure that the electron ensemb
will not decrease with time. Thereafter, the wall potent
was adjusted periodically~every 10–80 rf cycles dependin
on conditions! to maintain a constant, within limits, numbe
of electrons. The procedure was as follows. After an elect
move, the new location of the electron was tested to de
mine whether the electron had reached the plasma bound
Then, if the radial energy of the electronmv r

2/2 was greater
than the potential drop in the sheatheDf, the electron was
lost, otherwise it was specularly reflected. In between w
potential adjustements statistics were collected with regar
the energy of the electrons striking the plasma boundary.
resulting vector reflected the electron energy distribut
function ~EEDF! of the electrons penetrating the sheath. T
vector containing the electron energies was then sorte
ascending order. If the number of ionizations was not eq
to the number of electrons escapes~highly likely! the wall
potential was adjusted based on the net electron num
change. If there was an electron number deficit the wall
tential was set to a higher value to confine electrons. IfN2 is
the electron-number deficit, the new potential was de
mined by simply movingN2 notches up~with respect to
energy! the EEDF sorted vector from the notch closest to
current wall potential. If there was an electron number s
plus, the wall potential was set to a lower value to allo
more electrons to escape. IfN1 is the electron-number sur
plus, the new wall potential was determined by simply mo
ing N1 notches down~with respect to energy! from the
notch closest to the current wall potential. Naturally, th
results in a wall potential that fluctuates with time. If th
statistics are adequate, the wall potential fluctuations are
to a minimum. After the establishment of a dynamic stea
state, the characteristics of the electron ensemble were
corded to calculate the EDF and the ionization, loss, a
heating rates.

V. RESULTS OF THE DMC SIMULATIONS

Argon-gas pressures in the range 0.1–10 mtorr, excita
frequencies in the range 2–40 MHz, and magnetic induct
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fields of 1 or 2 G were examined for a chamber radi
R55 cm. The results of simulations are summarized in Ta
I for the case of a low-density plasma with uniform inducti
field B51 G ~no skin effect!. One observes the following
trends. For 13.56 and 40.7 MHz, the energy lost in inela
collisions Ein and the energy carried to the wallEw both
increase with increasing pressure. For 2 MHz there i
maximum ofEin andEw with respect to pressure. For 0.3 an
1 mtorr,Ein andEw decrease with an increase ofv, while at
10 mtorr Ein and Ew increase withv. The ratio of electron
escapes to the number of inelastic collisionsk decreases with
increasing pressure, except for the 2-MHz case. The hig
the heating rate, the longer the EDF ‘‘tail,’’ and a larger p
of energy is lost in collisions compared to energy carried
the wall. At higher pressures more energy is lost for exc
tion than for ionization.

Figure 10 shows the calculated EEDF as a function
total electron energy« for different radial positions. The am
plitude of time modulation of the EEDF in DMC simulation
was found to be negligible, as expected forv@n* . Namely,
the EEDFs at different phases of the fieldj coincide with
each other within the accuracy of the numerical simulati
The EEDFs shown in Fig. 10 are normalized according t

E
ef~r !

`

fA«2ef~r !d«5ne~r !/n0 , ~62!

wherene(r ) is the electron density at positionr andn0 is the
electron density on the axis.

Figure 11 shows the radial profiles of electron density a
temperature for the conditions of Fig. 10. The temperat
increases towards the wall since the EEDF is concave in
elastic energy range, which contains most of the electr
@36#.

Figure 12 shows the radial distribution of the rf curre
density for different field phasesj @Fig. 12~a!# and the cur-

FIG. 10. EEDF from DMC simulations as a function of tot
energy« for different radial positions, with an argon pressure o
mTorr,B051 G ~no skin effect!, andv58.53107 cm23. The elec-
trostatic potential isf(r )5f0(r /R)

4, wheref055 V.
le

ic

a

er
t
o
-

f

.

d
e
e
s

t

rent density vs phasej at differentr @Fig. 12~b!#. The current
density is shifted with respect to theEu field by;p/2 as is
expected forn!v. The phase shift does not depend sign
cantly on the radial position. The radial distribution of the
current does not show significant anomalies, which are ty
cal of the anomalous skin effect@10,18#. Under these condi-
tions, the distance a thermal electron travels during the fi
period,l;v/v'1.4 cm, is small compared to the characte
istic scale of theEu field inhomogeneity, approximately
equal toR. Significant current diffusion off the skin laye
and formation of multiple current layers with a phase shift
the current density and the field are expected to occu
l.d @18#.

Figure 13 illustrates the anisotropy degree of the ED
The dashed curve shows the distributionf z(«z ,r ) found by
sampling electrons with a given energy«z5mvz

2/m, parallel
to the magnetic field regardless ofv r and vu . The solid
curve shows the distributionf'(«' ,r ) perpendicular to the
field, which was found by collecting electrons with give
v r
21vu

2 irrespective of the value ofvz . Both distributions
f z and f' are atr50.1R. It is seen thatf z and f' are close to
each other for trapped electrons, with«,efw , but differ
considerably for free electrons, with«.efw . One may con-
clude that the EDF of trapped electrons is almost isotrop
while the EDF of free electrons is notably anisotropic. T
tail of f' is strongly depleted due to the escape of electr
with «'.efw to the wall as discussed in Sec. III.

Figure 14 shows the distributionf'(«' ,r ) at different
radial positions. It is seen that the tail of the distributio
decays with energy more rapidly near the axis, in acc
with the discussion in Sec. III. Overall, the DMC simulatio
results corroborate the theory presented in earlier sectio

VI. DISCUSSION

Electron heating in a gas discharge is a two-step proc
that includes~a! electron interactions with electromagnet
fields and~b! transfer of the directed energy gained from t
field into the energy of thermal motion. An electron can

FIG. 11. Radial profiles of electron density and ‘‘temperatur
for the conditions of Fig. 10. The radial increase of temperat
corresponds to the concave EEDF in Fig. 10.
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accelerated or decelerated by the electric field dependin
whether it moves along or against the direction of the for
The result of successive interactions depends upon p
correlations. Collisions play a twofold role. They change
direction of the electron motion and thus~i! transfer directed
kinetic energy acquired from the fields into kinetic energy
random motion and~ii ! randomize the field phase betwee
succesive interactions. The average energy gain per colli
is the small net difference between large actual gains
losses. We have demonstrated that phase randomization
also occur without collisions so that collisionless heating
ists in the ICP. The common feature of different heati
regimes is the statistical nature of the heating. In all ca
heating represents a random walk of an electron along
energy axis, which is described in terms of diffusion~energy
diffusion!.

Joule heating dominates at high gas pressures when
fields do not change appreciably over the mean free pat
electrons. The Joule heating is therefore local; processe~a!
and~b! referred to above take place at the same point and

FIG. 12. Azimuthal rf current density versus~a! the radial posi-
tion r for different phases of the rf field~labels near the curves! and
~b! the field phases for differentr . The discharge conditions are th
same as in Fig. 10.
on
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heating rate is determined by the local value of the elec
field. The energy diffusion coefficient given by Eq.~52! is
the product of a single kick in energyD«5(eEeffl)

2 and the
frequency of collisionsn. When the electron mean free pa
exceeds the thickness of the rf sheath or the skin layer, e
tron heating becomes nonlocal. The processes of elec
interaction with rf fields and ‘‘randomizing collisions’’ are
now separated in space. When the electron mean free
exceeds the discharge dimensions ‘‘collisions’’ with plasm
boundaries~potential barriers! occur more frequently than
collisions with gas species. The finite dimensions of t
plasma become an important consideration under these
ditions since phase correlations of the rf fields could resul
large energy excursions compared to the energy chang
the single interaction with the rf sheath or skin layer. On t

FIG. 13. Electron distributionsf'(«' ,r ) ~solid line! and
f z(«z ,r ) ~dashed line! at r50.1R. The discharge conditions are th
same as in Fig. 10.

FIG. 14. Electron distributionf'(«' ,r ) for different radial po-
sitions. The discharge conditions are the same as in Fig. 10.
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other hand, under certain conditions, electron dynamics
comes chaotic even without collisions with particles. T
entire discharge volume participates in the heating proc
under these nonlocal conditions even though the hea
fields are clearly localized. The heating regime where e
tron interactions with the rf field and collisions are spatia
separated is referred to as non-Joule heating.

We have further distinguished collisionless and hyb
heating regimes as belonging to non-Joule heating. The
cific feature of collisionless heating is that it can impart e
ergy into one direction. However, if the heating process
slow compared to collisions~as it typically occurs in gas
discharges!, the EDF should be almost isotropic.

An analysis of electron heating and formation of the ED
requires simulations of electron kinetics on a long time sc
compared to the period of the rf field, the bounce time, a
the intercollision time 1/n. The electron energy spectrum
established on a time scale that is of the order of the ene
relaxation time;1/n* . During its lifetime, an average elec
tron undergoes many elastic collisions. Moreover, during
lifetime, an average electron must generate one electron
pair to maintain a steady state. The fields in a discharge
established in such a way that during their lifetime slo
electrons are heated up to energy;efw . The shape of the
EDF is determined by a balance of electron fluxes along
energy axis. Heating produces a duffusive flux of electro
from the low-energy region where particles are abundan
the high-energy region where the particle density is low.
elastic collisions produce a sink of electrons at high energ
and a source of electrons at low energies. In the absenc
Coulomb interactions, the EDF may substantially differ fro
a Maxwellian.

The oscillatory magnetic field has a large impact on c
lisionless electron heating. The Lorentz force changes
direction of electron diffusion in velocity space. In the h
brid regime, however, the influence of theB field is not so
critical. In fact, DMC simulations of low-density ICP~no
skin effect! with and without theB field reveal a surprisingly
small difference in the heating rate at a frequency 13
MHz and argon pressure 1 mtorr. With a decrease ofv, the
influence of theB field may become more important. If w
assume that the same electric fieldEu is required to sustain a
discharge for differentv, then a larger rf current andB field
would be necessary at lowerv sinceEu}vB. The higher
B field produces higher ‘‘radiation pressure,’’ preventin
electrons from entering the skin layer of highEu . Thus, at
lower v the heating rate with account of theB field should
be lower than that without theB field. This was in fact ob-
served in our simulations.

The heating rate and the electron energy spectrum dep
on the entire profiles of electromagnetic and electrost
fields in the discharge. A pronounced skin effect, toget
with weak Coulomb interactions among electrons, results
the following phenomenon. Due to the presence of the e
trostatic potential in the plasma, slow electrons are confi
in the vicinity of the potential maximum near the dischar
center. These electrons cannot reach the skin layer nea
wall and be heated. In the absence of Coulomb interacti
the mean energy of these electrons can be very low an
sharp peak of the EDF can be formed at low energies~see
Fig. 15!. This phemonenon is well known for CCP
e-
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@37,27,38# and has been recently reported for ICPs at lo
power input ~hence relatively low plasma density whe
Coulomb interactions are not too strong! @28#. Manifestation
of the nonlocal electron kinetics is therefore rather comm
for all low-pressure plasmas regardless of the particu
mechanism of electron heating and discharge maintenan

VII. CONCLUSION

We have studied electron kinetics in a nearly collisionle
cylindrical ICP taking into account the influence of the o
cillatory magnetic field and the finite dimensions of th
plasma. An analysis of single-particle dynamics revealed
electron motion may become chaotic even without collisio
with gas particles. We have distinguished collisionless he
ing from hybrid heating. In the hybrid heating regime, col
sions with particles are important for randomization of ele
tron motion. We have developed a nonlocal approach to
solution of the electron Boltzmann equation in a free-flig
regime when the traditional two-term Legendre expansion
not valid. We have calculated the energy diffusion coe
cient for hybrid heating regimes and identified resonan
phenomena caused by the finite dimensions of the plas
We have used the Dynamic Monte Carlo simulations to c
culate the EDF in a wide range of discharge conditions. T
results of the DMC simulations have been compared to th
retical analysis. Our studies indicate that the EDF of trapp
electrons with total energy below the wall potential is almo
isotropic and is a function solely of total energy«, while the
EDF of free electrons with«.efw is notably anisotropic
and depends on the radial position.
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FIG. 15. Electron distributionf'(«' ,r ) for a thin skin layer:
d5R/5, B052 G, andv58.53107 s21.



n-
8

E

v

J

mo

a

d

ys

l.

h.

no

J.

ch-

as

ci.

n

-

-

ys.

3422 55V. I. KOLOBOV, D. P. LYMBEROPOULOS, AND D. J. ECONOMOU
@1# M. A. Lieberman and A. J. Lichtenberg,Principles of Plasma
Discharges and Materials Processing~Wiley, New York,
1994!.

@2# H. U. Eckert, inProceedings of the Second International Co
ference on Plasma Chemical Technology, San Diego, 19,
edited by H. V. Boenig~Technomic, Lancaster, 1986!.

@3# V. I. Kolobov and W. N. G. Hitchon, Phys. Rev. E52, 972
~1995!.

@4# U. Kortshagen, I. Pukropski, and L.D. Tsendin, Phys. Rev
51, 6063~1995!.

@5# V. I. Kolobov, G. J. Parker, and W. N. G. Hitchon, Phys. Re
E 53, 1110~1996!.

@6# V. A. Godyak, Zh. Tekh. Fiz.41, 1364 ~1971! @Sov. Phys.
Tech. Phys.16, 1073~1972!#.

@7# C. E. Goedde, A. J. Lichtenberg, and M. A. Lieberman,
Appl. Phys.64, 4375~1988!.

@8# J. Hopwood, C. R. Guarnieri, S. J. Whitehair, and J. J. Cuo
J. Vacuum Sci. Technol.11, 147 ~1993!.

@9# V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, Plasm
Sources Sci. Technol.3, 169 ~1994!.

@10# M. M. Turner, Plasma Sources Sci. Technol.5, 159 ~1996!.
@11# V. Vahedi, M. A. Lieberman, G. DiPeso, T. D. Rognlien, an

D. Hewett, J. Appl. Phys.,78, 1446~1995!.
@12# H. A. Blevin, J. A. Reinolds, and P. C. Thonemann, Ph

Fluids16, 82 ~1973!.
@13# I. D. Kaganovich, V. I. Kolobov, and L. D. Tsendin, App

Phys. Lett.69, 3818~1996!.
@14# R. A. Demirkhanov, I. Ya. Kadysh, and Yu. S. Khodyrev, Z

Eksp. Teor. Fiz.46, 1169 ~1964! @Sov. Phys. JETP19, 791
~1964!#.

@15# R. H. Cohen and T. D. Rognlien, Plasma Sources Sci. Tech
5, 442 ~1996!.

@16# M. R. Gibbons and D. W. Hewett, J. Comput. Phys.120, 231
~1995!.

@17# H. A. Blevin, J. M. Greene, D. L. Jolly, and R. G. Storer,
Plasma Phys.10, 337 ~1973!.
4

.

.

,

.

l.

@18# V. I. Kolobov and D. J. Economou, Plasma Sources Sci. Te
nol. ~to be published!.

@19# K. Henjes, J. Appl. Phys.79, 21 ~1995!.
@20# K. Chandrakar, J. Phys. D11, 1809~1978!.
@21# G. Schmidt, The Physics of High-Temperature Plasm

~Addison-Wesley, Reading, MA, 1966!.
@22# E. S. Weibel, Phys. Rev.114, 18 ~1959!.
@23# R. Z. Sagdeev, D. A. Usikov, and G. M. Zaslavsky,Nonlinear

Physics from the Pendulum to Turbulence and Chaos~Har-
wood Academic, Chur, Switzerland, 1988!.

@24# A. J. Lichtenberg and M. A. Lieberman,Regular and Chaotic
Dynamics~Springer-Verlag, New York, 1992!.

@25# V. L. Ginzburg and A. V. Gurevich, Usp. Fiz. Nauk70, 201
~1960! @Sov. Phys. Usp.3, 115 ~1960!#.

@26# L. D. Tsendin and Yu. B. Golubovskii, Zh. Tekh. Fiz.47, 1839
~1977! @Sov. Phys. Tech. Phys.22, 1066~1977!#.

@27# I. D. Kaganovich and L. D. Tsendin, IEEE Trans. Plasma S
20, 86 ~1992!.

@28# V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, i
Proceedings of the ICOPS’96, Boston, 1996~IEEE, 1996!.

@29# R. W. Hockney and J. W. Easwood,Computer Simulation us-
ing Particles~Hilger, Bristol, 1988!.

@30# C. K. Birdsall and A. B. Langdon,Plasma Physics via Com
puter Simulation~McGraw-Hill, New York, 1985!.

@31# D. P. Lymberopoulos and J. D. Shieber, Phys. Rev. E50, 4911
~1994!.

@32# D. P. Lymberopoulos and D. J. Economou, J. Phys. D28, 727
~1995!.

@33# H. R. Skulerud, J. Phys. D25, 1567~1968!.
@34# Y. Weng and M. J. Kushner, Phys. Rev. A42, 6192~1990!.
@35# G. A. Bird, Molecular Gas Dynamics and the Direct Simula

tion of Gas Flows~Oxford Science, New York, 1994!.
@36# V. I. Kolobov and V. A. Godyak, IEEE Trans. Plasma Sci.23,

503 ~1995!.
@37# V. A. Godyak and R. B. Piejak, Phys. Rev. Lett.65, 996

~1990!.
@38# U. Buddemeier, U. Kortschagen, and I. Pukropski, Appl. Ph

Lett. 67, 191 ~1995!.


